Answer:
(a) The convex mirror image, is always upright at all positions, while images formed by concave mirrors are always inverted when the object distance from the mirror is more than the mirrors focal length.
(b) An upright image is not seen for object at a distance from a concave mirror further than the focal length of the mirror, which is the spoon in the question
Therefore, the location of her eyes of approximately, 30 cm, from the mirror is more than the mirror's focal length
Explanation:
Answer:
Increasing its charge
Increasing the field strength
Explanation:
For a charged particle moving in a circular path in a uniform magnetic field, the centripetal force is provided by the magnetic force, so we can write:
where
q is the charge
v is the velocity
B is the magnetic field
m is the mass
r is the radius of the orbit
The period of the motion is
Re-arranging for r
And substituting into the previous equation
Solving for T,
So we see that the period is:
- proportional to the charge and the magnetic field
- inversely proportional to the mass and the square of the speed
So the following will increase the period of the particle's motion:
Increasing its charge
Increasing the field strength
KE = 1/2 mv^2 is the relationship betwee mass and kinetic energy
Answer:
JA
Explanation:
s of time, (b) the velocity and acceleration at t = 2.0 s, (c) the time at which the position is a maximum, (d) the time at which the velocity is zero, and (e) the maximum position. Assume all variable and constants are in SI units.
Answer: d. 8.25 m/s
Explanation:
We are given that Current= 5 m/s in j direction
Velocity= 8 m/s i + 3 m/s j
Now, we have to find Jada's speed with respect to the water.
First we find Jada's velocity with respect to water
v= (8 i + 3 j) - (5 j)
v= 8i - 2 j
To find the speed, we take the magnitude of this velocity vector we have
|v|=
|v|= = 8.246 m/s
which comes out to be around = 8.25 m/s
So option d is correct.