The answer is c I took that test last tear
Answer:
ummm there is nothing
Step-by-step explanation:
Answer:
If we assume a temperature of 20ºc and the blood interfacial surface tension is similar to water interfacial surface tension, the diameter of the capillary tube should be 0.933mm.
Step-by-step explanation:
The Jurin law describes the height a fluid can reach in a capillary tube. This law can be written as:

where γ is the interfacial surface tension, θ is the contact angle with the fluid, ρ is the fluid density, g is the gravity acceleration and r is the tube radius.
If we assume that the interfacial surface tension of blood and water are almost the same, γ=0,0728 N/m at 20ºc. Therefore the diameter of the tube will be:

The inverse of 2/3
is 3/2.
Good Luck! :)
Answer:

The interval of convergence is:
Step-by-step explanation:
Given


The geometric series centered at c is of the form:

Where:
first term
common ratio
We have to write

In the following form:

So, we have:

Rewrite as:


Factorize

Open bracket

Rewrite as:

Collect like terms

Take LCM


So, we have:

By comparison with: 



At c = 6, we have:

Take LCM

r = -\frac{1}{3}(x + \frac{11}{3}+6-6)
So, the power series becomes:

Substitute 1 for a


Substitute the expression for r

Expand
![\frac{9}{3x + 2} = \sum\limits^{\infty}_{n=0}[(-\frac{1}{3})^n* (x - \frac{7}{3})^n]](https://tex.z-dn.net/?f=%5Cfrac%7B9%7D%7B3x%20%2B%202%7D%20%3D%20%20%5Csum%5Climits%5E%7B%5Cinfty%7D_%7Bn%3D0%7D%5B%28-%5Cfrac%7B1%7D%7B3%7D%29%5En%2A%20%28x%20-%20%5Cfrac%7B7%7D%7B3%7D%29%5En%5D)
Further expand:

The power series converges when:

Multiply both sides by 3

Expand the absolute inequality

Solve for x

Take LCM


The interval of convergence is: