Answer:
The predominant intermolecular force in the liquid state of each of these compounds:
ammonia (NH3)
methane (CH4)
and nitrogen trifluoride (NF3)
Explanation:
The types of intermolecular forces:
1.Hydrogen bonding: It is a weak electrostatic force of attraction that exists between the hydrogen atom and a highly electronegative atom like N,O,F.
2.Dipole-dipole interactions: They exist between the oppositely charged dipoles in a polar covalent molecule.
3. London dispersion forces exist between all the atoms and molecules.
NH3 ammonia consists of intermolecular H-bonding.
Methane has London dispersion forces.
Because both carbon and hydrogen has almost similar electronegativity values.
NF3 has dipole-dipole interactions due to the electronegativity variations between nitrogen and fluorine.
My answer is....A
sorry if im wrong
The best answer is the isotope of strontium which is strontium-85. It has a half-life of about 64 days. The metal strontioum has four stable, naturally occurring isotopes which includes 84Sr (0.56%), 86Sr (9.86%), 87Sr (7.0%) and 88Sr (82.58%).
Well, we need to find the ratio of Al to the other reactant.
Al:HCl = 1:3
--> this means that for every 1 Al used, you have to use 3 HCl.
6*3 = 18 moles of HCl needed to fully react with 6 moles of Al. Since 13<18, HCL is the limiting reactant.
The ratio of HCl:AlCl = 3:1
13/3 = 4.3333...
The final answer is HCl is the limiting reactant with 4.3 moles of AlCl3 able to be produced.
Hope this helps!!! :)