To do this we may use things that are good conductors - are painted dull black -
Have a air flow around them Maximised.
Answer:
8.8 × 10⁻³ g/L
Explanation:
NaF is a strong electrolyte that ionizes according to the following reaction.
NaF(aq) → Na⁺(aq) + F⁻(aq)
Then, the concentration of F⁻ will also be 0.10 M.
In order to find the solubility of PbF₂ (S), we will use an ICE Chart.
PbF₂(s) ⇄ Pb²⁺(aq) + 2 F⁻(aq)
I 0 0.10
C +S +2S
E S 0.10 + 2S
The solubility product (Kps) is:
Kps = 3.6 × 10⁻⁸ = [Pb²⁺].[F⁻]² = S . (0.10 + 2S)²
In the term 0.10 + 2S, 2S is negligible in comparison with 0.10 and we can omit it to simplify calculations.
Kps = 3.6 × 10⁻⁸ = S . (0.10)²
S = 3.6 × 10⁻⁵ M
The molar mass of PbF₂ is 245.20 g/mol. The solubility of PbF₂ in g/L is:
3.6 × 10⁻⁵ mol/L × 245.20 g/mol = 8.8 × 10⁻³ g/L
Let N be the normal force that forces the person against the wall.
Then u N = m g is the frictional force supporting the person's weight
and N = m g / u
also, N = m v^2 / R is the normal force providing the centripetal acceleration
So, m g / u = m v^2 / R
v^2 = g R / u
since v = 2 pi R T
4 pi^2 R^2 T^2 = g R / u and T^2 = g / (4 u pi^2 R)
T = 1/ (2 pi) (g /(u R))^1/2 = .159 * (9.8 m/s^2 / (.521 * 4.4 m)) ^1/2
T = .68 / s
Do you see any thing wrong here?
T should have units of seconds not 1 / seconds
v should be 2 * pi * R / T where T is the time for 1 revolution
So you need to make that correction in the above formula for v.