Answer:
u₂ = 3.7 m/s
Explanation:
Here, we use the law of conservation of momentum, as follows:

where,
m₁ = mass of the car = 1250 kg
m₂ = mass of the truck = 2020 kg
u₁ = initial speed of the car before collision = 17.4 m/s
u₂ = initial speed of the tuck before collision = ?
v₁ = final speed of the car after collision = 6.7 m/s
v₂ = final speed of the truck after collision = 10.3 m/s
Therefore,

<u>u₂ = 3.7 m/s</u>
The work done to pull the object 7.0 m is the total area under the graph from 0.0 m to 7.0 m, determined as 245 J.
<h3>Work done by the applied force</h3>
The area under force versus displacement graph is work done.
The total work done by pulling the object 7 m, can be grouped into two areas;
- First area, A1 = area of triangle from 0 m to 2.0 m
- Second area, A2 = area of trapezium, from 2.0 m to 7.0 m
A1 = ¹/₂ bh
A1 = ¹/₂ x (2) x (20)
A1 = 20 J
A2 = ¹/₂(large base + small base) x height
A2 = ¹/₂[(7 - 2) + (7-3)] x 50
A2 = ¹/₂(5 + 4) x 50
A2 = 225 J
<h3>Total work done </h3>
W = A1 + A2
W = 20 J + 225 J
W = 245 J
Learn more about work done here: brainly.com/question/8119756
Answer:
137.2J
Explanation:
Ep= mgh
Given,
and we know, g = 9.81 N/kg
Ep= 2 × 9.81 × 7
Ep= 137.2J
Option C i.e scattering is the correct answer.
Scattering type of Polarization occurs when light strikes the atoms of a material.
Polarization is the process of transforming unpolarized light into polarized light. There are four methods of polarisation--Transmission, Refraction, Reflaction and Scattering.
Answer:
The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
Explanation:
hope it helps pls give me brainless