Answer:
c20800
Explanation:
go to bear khana bro your book looks cheap go and study in durbar kanda school and take somee cash and do ash ah boy
The six steps of the scientific are:
1. State the question
2. Conduct research
3. Create a hypothesis
4. Perform the experiment
5. Analyze the data
6. Conclusion
So D. would be the correct answer, even though communicating the results could possibly be a step if it's required.
Let's start with the concept of momentum. What is it? Linear momentum in physics is mathematically written as a product of mass and velocity of an object. Now let us suppose a body of mass m is moving in an inertial frame of reference with velocity v. Consider the fact that no external force is acting on the system. The momentum of this body is given by mv, where m is the mass and v is its velocity. In case of simple real world problems not delving into the realms of relativity, mass is a conserved quantity and it cannot be zero. Hence the velocity of the body must be zero and hence the momentum.
However, photons are considered to have a rest mass zero.
However note the point carefully "rest mass". A body in motion cannot have mass to be zero.
<em>-</em><em> </em><em>BRAINLIEST</em><em> answerer</em><em> ❤️</em>
Explanation:
It is known that relation between torque and angular acceleration is as follows.

and, I = 
So, 
= 4 


So, 
= 1 
as 
=
Hence, 

Thus, we can conclude that the new rotation is
times that of the first rotation rate.
Answer:
the <em>ratio F1/F2 = 1/2</em>
the <em>ratio a1/a2 = 1</em>
Explanation:
The force that both satellites experience is:
F1 = G M_e m1 / r² and
F2 = G M_e m2 / r²
where
- m1 is the mass of satellite 1
- m2 is the mass of satellite 2
- r is the orbital radius
- M_e is the mass of Earth
Therefore,
F1/F2 = [G M_e m1 / r²] / [G M_e m2 / r²]
F1/F2 = [G M_e m1 / r²] × [r² / G M_e m2]
F1/F2 = m1/m2
F1/F2 = 1000/2000
<em>F1/F2 = 1/2</em>
The other force that the two satellites experience is the centripetal force. Therefore,
F1c = m1 v² / r and
F2c = m2 v² / r
where
- m1 is the mass of satellite 1
- m2 is the mass of satellite 2
- v is the orbital velocity
- r is the orbital velocity
Thus,
a1 = v² / r ⇒ v² = r a1 and
a2 = v² / r ⇒ v² = r a2
Therefore,
F1c = m1 a1 r / r = m1 a1
F2c = m2 a2 r / r = m2 a2
In order for the satellites to stay in orbit, the gravitational force must equal the centripetal force. Thus,
F1 = F1c
G M_e m1 / r² = m1 a1
a1 = G M_e / r²
also
a2 = G M_e / r²
Thus,
a1/a2 = [G M_e / r²] / [G M_e / r²]
<em>a1/a2 = 1</em>