1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pishuonlain [190]
3 years ago
14

An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that a person inside is stuck

to the wall and does not slide down when the floor drops away. The acceleration of gravity is 9.8 m/s 2 . Given g = 9.8 m/s 2 , the coefficient µ = 0.521 of static friction between a person and the wall, and the radius of the cylinder R = 4.4 m. For simplicity, neglect the person’s depth and assume he or she is just a physical point on the wall. The person’s speed is v = 2πR T where T is the rotation period of the cylinder (the time to complete a full circle). Find the maximum rotation period T of the cylinder which would prevent a 40 kg person from falling down. Answer in units of s.
Physics
1 answer:
ElenaW [278]3 years ago
7 0

Let N be the normal force that forces the person against the wall.

Then u N = m g  is the frictional force supporting the person's weight

and N = m g / u

also, N = m v^2 / R is the normal force providing the centripetal acceleration

So, m g / u = m v^2 / R

v^2 = g R / u

since v = 2 pi R T

4 pi^2 R^2 T^2 = g R / u     and T^2 = g / (4  u pi^2 R)

T = 1/ (2 pi)  (g /(u R))^1/2 = .159 * (9.8 m/s^2 / (.521 * 4.4 m)) ^1/2

T = .68 / s

Do you see any thing wrong here?

T should have units of seconds not 1 / seconds

v should be  2 * pi * R / T  where T is the time for 1 revolution

So you need to make that correction in the above formula for v.

You might be interested in
If the pendulum took longer to complete one oscillation, how would the graph change?
pickupchik [31]

We don't know what kind of graph it is.

For example, it might be a graph of the pendulum's distance from center,

angle from center, speed, acceleration, total distance swung since it was

started, mass, weight, temperature, etc.


If the graph shows the pendulum's distance from center, angle from center,

speed, or acceleration, then the graph will look like a wave, with the period

of the wave being the period of the pendulum's oscillation. If the pendulum

took longer to complete one oscillation, that means its PERIOD increased,

and the distance between the peaks of the graph would be longer.


If it was a graph of total distance the pendulum swung since it was started,

the graph wouldn't look like a wave, just a steadily rising wiggle line. If the

pendulum took longer to complete one oscillation, the wiggles in the line

would be farther apart, and the average slope of any large section of the

line would be less.


If it was a graph of the pendulum's mass, weight, temperature, cost, etc.,

then the graph would be a horizontal line, and nothing that might change

the period of oscillation would have any effect on the graph.

7 0
3 years ago
Read 2 more answers
A black, totally absorbing piece of cardboard of area a = 2.1 cm2 intercepts light with an intensity of 8.8 w/m2 from a camera s
PolarNik [594]

Answer:

The value of radiation pressure is 2.933 \times 10^{-8} Pa

Explanation:

Given:

Intensity I = 8.8 \frac{W}{m^{2} }

Area of piece A = 2.1 \times 10^{-4} m^{2}

From the formula of radiation pressure in terms of intensity,

   P = \frac{I}{c}

Where P = radiation pressure, c = speed of light

We know value of speed of light,

 c = 3 \times 10^{8} \frac{m}{s}

Put all values in above equation,

  P = \frac{8.8}{3 \times 10^{8} }

  P = 2.933 \times 10^{-8} Pa

Therefore, the value of radiation pressure is 2.933 \times 10^{-8} Pa

8 0
3 years ago
As the distance between two charged objects increases, the strength of the electrical force between the objects
GuDViN [60]

Answer:

I believe the answer is It increases

4 0
3 years ago
If you are pushing on a crate on a frictionless surface in one direction, and your friend is pushing on the crate in the opposit
liberstina [14]

Answer:

Its not A..

Explanation:

I chose A - was incorrect

3 0
3 years ago
Calculate the magnitude and direction of the electric field 2.0 m from a long wire that is charged uniformly at λ = 4.0 × 10-6 C
Len [333]

Answer: 71.93 *10^3 N/C

Explanation: In order to calculate the electric field from long wire we have to use the Gaussian law, this is:

∫E*dr=Q inside/εo  Q inside is given by: λ*L then,

E*2*π*r*L=λ*L/εo

E= λ/(2*π*εo*r)= 4* 10^-6/(2*3.1415*8.85*10^-12*2 )= 71.93 * 10^3 N/C

6 0
3 years ago
Other questions:
  • Recall the examples of transmission and absorption, then determine which ones are similar here.
    10·2 answers
  • A force of 49N causes a box to move with an acceleration of 7m/s2. Find the mass of the object
    9·1 answer
  • The specific gravity of mantle rock is about 3.3. True False
    11·1 answer
  • How do I figure out if the acceleration is negative, positive or zero ?
    13·1 answer
  • The floor of a railroad flatcar is loaded with loose crates having a coefficient of static friction of 0.480 with the floor. If
    12·1 answer
  • An electromagnetic wave of intensity 150 W/m2 is incident normally on a rectangular black card with sides of 25 cm and 30 cm tha
    9·1 answer
  • A 1.00-kmkm length of power line carries a total charge of 230 mCmC distributed uniformly over its length. Find the magnitude of
    13·1 answer
  • 9. A 12 v battery is connected to four 5 ohm light bulbs. What is the equivalent
    13·1 answer
  • Assess It! Question #2: Which of the following statements about the Law
    10·2 answers
  • Which of the following is same dimension quantity?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!