Answer:
Second step
(CH3)3C+ (aq) + OH^-(aq) ------->(CH3)3COH(aq)
Explanation:
This reaction involves;
First the ionization of the tertiary halide to firm a carbocation
Secondly the attack of the hydroxide ion on the carbocation to form tert-butanol
First step;
(CH3)3CBr (aq) → (CH3)3C+ (aq) + Br- (aq)
Second step
(CH3)3C+ (aq) + OH^-(aq) ------->(CH3)3COH(aq)
This second step completes the reaction mechanism.
[ H₃O⁺] = 10 ^ - pH
[ H₃O⁺ ] = 10 ^ - 7.30
[ H₃O⁺ ] = 5.011 x 10⁻⁸ M
hope this helps!
Answer:
Q < K for both reactions. Both are spontaneous at those concentrations of substrate and product.
Explanation:
Hello,
In this case, the undergoing chemical reactions with their proper Gibbs free energy of reaction are:


The cellular concentrations are as follows: [A] = 0.050 mM, [B] = 4.0 mM, [C] = 0.060 mM and [D] = 0.010 mM.
For each case, the reaction quotient is:

A typical temperature at a cell is about 30°C, in such a way, the equilibrium constants are:

Therefore, Q < K for both reactions. Both are spontaneous at those concentrations of substrate and product.
Best regards.