1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katena32 [7]
3 years ago
12

What must be the reaction force when someone hits a tree with an axe?

Physics
1 answer:
Iteru [2.4K]3 years ago
7 0

Answer: The correct option is that the axe handle applying a force to the person's hand.

Explanation:

This reaction force is due to Newton's third law of motion. This law states that for every action there is equal and opposite reaction to it. This implies that when a force is being exerted on a surface, the surface must exert a force that is equal and opposite in direction to the exerting force. This law represents a certain symmetry in nature that forces always occur in pairs, and one body cannot exert a force on another without experiencing a force itself.

A typical example of Newton's third law includes:

--> When you hit a tree with an axe: with your hand you exert a force on the tree with the intention to cut it down(action force). The same force you excreted on the tree would be felt in your hands (reaction force).

--> when air rushes out of a balloon: when air escapes for a balloon, the opposite reaction is that the balloon flies up.

You might be interested in
A pendulum consists of a large balanced mass hanging on the end of a long wire. At the point where a 28-kg pendulum has the grea
Ray Of Light [21]

Answer:

The length of the wire is approximately 67.1 m

Explanation:

The parameters of the pendulum are;

The mass of the pendulum, m = 28 kg

The angle between the pendulum weight and the wire, θ = 89°

The magnitude of the torque exerted by the pendulum's weight, τ = 1.84 × 10⁴ N·m

We have;

Torque, τ = F·L·sinθ = m·g·l·sinθ

Where;

F = The applies force = The weight of the pendulum = m·g

g = The acceleration due to gravity ≈ 9.8 m/s²

l = The length of the wire

Plugging in the values of the variables gives;

1.84 × 10⁴ N·m = 28 kg × 9.8 m/s² × l × sin(89°)

Therefore;

l = 1.84 × 10⁴ N·m/(28 kg × 9.8 m/s² ×  sin(89°)) = 67.0656080029 m ≈ 67.1 m

The length of the wire, l ≈ 67.1 m

6 0
3 years ago
Two equal point charges QQQ are separated by a distance ddd. One of the charges is released and moves away from the other due on
lys-0071 [83]

Answer:

The kinetic energy K of the moving charge is K = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd

Explanation:

The potential energy due to two charges q₁ and q₂ at a distance d from each other is given by U = kq₁q₂/r.

Now, for the two charges q₁ = q₂ = Q separated by a distance d, the initial potential energy is U₁ = kQ²/d. The initial kinetic energy of the system K₁ = 0 since there is no motion of the charges initially. When the moving charge is at a distance of r = 3d, the potential energy of the system is U₂ = kQ²/3d and the kinetic energy is K₂.

From the law of conservation of energy, U₁ + K₁ = U₂ + K₂

So, kQ²/d + 0 = kQ²/3d + K

K₂ = kQ²/d - kQ²/3d = 2kQ²/3d

So, the kinetic energy K₂ of the moving charge is K₂ = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd

4 0
3 years ago
The photon energies used in different types of medical x-ray imaging vary widely, depending upon the application. Single dental
pav-90 [236]

A) 5.0\cdot 10^{-11} m

The energy of an x-ray photon used for single dental x-rays is

E=25 keV = 25,000 eV \cdot (1.6\cdot 10^{-19} J/eV)=4\cdot 10^{-15} J

The energy of a photon is related to its wavelength by the equation

E=\frac{hc}{\lambda}

where

h=6.63\cdot 10^{-34}Js is the Planck constant

c=3\cdot 10^8 m/s is the speed of light

\lambda is the wavelength

Re-arranging the equation for the wavelength, we find

\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{4\cdot 10^{-15}J}=5.0\cdot 10^{-11} m

B) 2.0\cdot 10^{-11} m

The energy of an x-ray photon used in microtomography is 2.5 times greater than the energy of the photon used in part A), so its energy is

E=2.5 \cdot (4\cdot 10^{-15}J)=1\cdot 10^{-14} J

And so, by using the same formula we used in part A), we can calculate the corresponding wavelength:

\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{1\cdot 10^{-14}J}=2.0\cdot 10^{-11} m

4 0
3 years ago
Heated air moves from baseboard heaters to the rest of a room in a process called
pychu [463]
It is called convection
3 0
3 years ago
Which phrase best descirbes how scientists use the data they collect
goldenfox [79]

Answer:

Please give the context of questions

Explanation:

It really helps people answer your questions. thanks

3 0
3 years ago
Other questions:
  • Which type of mirror produces images that are always upright and at the same distance from the mirror as the object is?
    8·2 answers
  • Which of the following is a key assumption of the scientific method
    9·1 answer
  • What do you mean by MA.​
    7·2 answers
  • The acceleration of a particle moving along a straight line is given by a = −kt2 m/s2 where k is a constant and time t is in sec
    8·1 answer
  • What statement used during the scientific method is falsifiable or framed in a way that allow other scientist to prove it false
    8·1 answer
  • Match the term with the appropriate image
    13·1 answer
  • Help with this question please
    14·1 answer
  • What is the weight in newtons of lily’s convertible, which has a mass of 1800 kg?
    5·1 answer
  • Help me out with this stuff
    10·2 answers
  • A cat (5kg) has a potential energy of 8J. The cat is stuck on top of a bookshelf and then falls off the bookshelf. What is the v
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!