Answer:
4600s
Explanation:

For a first order reaction the rate of reaction just depends on the concentration of one specie [B] and it’s expressed as:
![-\frac{d[B]}{dt}=k[B] - - - -\frac{d[B]}{[B]}=k*dt](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D%3Dk%5BB%5D%20-%20-%20-%20%20-%5Cfrac%7Bd%5BB%5D%7D%7B%5BB%5D%7D%3Dk%2Adt)
If we have an ideal gas in an isothermal (T=constant) and isocoric (v=constant) process.
PV=nRT we can say that P = n so we can express the reaction order as a function of the Partial pressure of one component.
![-\frac{d[P(N_{2}O_{5})]}{P(N_{2}O_{5})}=k*dt](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BP%28N_%7B2%7DO_%7B5%7D%29%5D%7D%7BP%28N_%7B2%7DO_%7B5%7D%29%7D%3Dk%2Adt)
Integrating we get:
![\int\limits^p \,-\frac{d[P(N_{2}O_{5})]}{P(N_{2}O_{5})}=\int\limits^ t k*dt](https://tex.z-dn.net/?f=%5Cint%5Climits%5Ep%20%5C%2C-%5Cfrac%7Bd%5BP%28N_%7B2%7DO_%7B5%7D%29%5D%7D%7BP%28N_%7B2%7DO_%7B5%7D%29%7D%3D%5Cint%5Climits%5E%20t%20k%2Adt)
![-(ln[P(N_{2}O_{5})]-ln[P(N_{2}O_{5})_{o})])=k(t_{2}-t_{1})](https://tex.z-dn.net/?f=-%28ln%5BP%28N_%7B2%7DO_%7B5%7D%29%5D-ln%5BP%28N_%7B2%7DO_%7B5%7D%29_%7Bo%7D%29%5D%29%3Dk%28t_%7B2%7D-t_%7B1%7D%29)
Clearing for t2:
![\frac{-(ln[P(N_{2}O_{5})]-ln[P(N_{2}O_{5})_{o})])}{k}+t_{1}=t_{2}](https://tex.z-dn.net/?f=%5Cfrac%7B-%28ln%5BP%28N_%7B2%7DO_%7B5%7D%29%5D-ln%5BP%28N_%7B2%7DO_%7B5%7D%29_%7Bo%7D%29%5D%29%7D%7Bk%7D%2Bt_%7B1%7D%3Dt_%7B2%7D)
![ln[P(N_{2}O_{5})]=ln(650)=6.4769](https://tex.z-dn.net/?f=ln%5BP%28N_%7B2%7DO_%7B5%7D%29%5D%3Dln%28650%29%3D6.4769)
![ln[P(N_{2}O_{5})_{o}]=ln(760)=6.6333](https://tex.z-dn.net/?f=ln%5BP%28N_%7B2%7DO_%7B5%7D%29_%7Bo%7D%5D%3Dln%28760%29%3D6.6333)

the answer is in the picture, btw the molar mass for the first one is wrong, it should be 77.98, and the final product is 2.32
Answer:
eukaryotic
Explanation:
all human cells—including those found in the brain, the heart, the muscles, and so on—are also eukaryotic.
Carbon dioxide
Have a great day:)
Answer:
mass P4 = 35.998 g
Explanation:
∴ STP: P = 1 atm; T = 298 K
∴ V O2= 35.5 L
⇒ nO2 = P.V / R.T
∴ R = 0.082 atm.L/K.mol
⇒ nO2 = ((1 atm)×(35.5L))/((0.082 atm.L/K.mol)(298K))
⇒ nO2 = 1.453 mol O2
⇒ mol P4 = (1.453 molO2)×(mol P4/ 5molO2) = 0.2906 mol P4
∴ Mw P4 = 123.895 g/mol
⇒ mass P4 = (0.2906 mol P4)×(123.895 g/mol) = 35.998 g P4