Answer:
women based on height usually should way about 200 pounds which included muscle.
Explanation:
Answer:
Correct answer: F₂ = 104.5 N
Explanation:
Given:
m = 57 g = 57 · 10⁻³ kg
Δt = 30 ms = 30 · 10 ⁻³ seconds
V₁ = 73.14 m/s service speed
V₂ = 55 m/s returned speed
M = m · V Momentum or Impulse
You forgot to indicate what time the ball contact when returning.
We will assume that the time is the same Δt = 30 ms = 30 10 ⁻³ seconds.
The formula for calculating force is according to Newton's second law is:
F = ΔM / Δt = m · ΔV / Δt
Force during service is:
F₁ = 57 · 10⁻³ · 73.14 / 30 · 10 ⁻³ = 138.97 N
F₁ = 138.97 N
Returned force:
F₂ = 57 · 10⁻³ · 55 / 30 · 10 ⁻³ = 104.5 N
F₂ = 104.5 N
God is with you!!!
Light<span> refracts whenever it </span>travels<span> at an angle into a substance with a </span>different<span>refractive index (optical density). This change of direction is </span>caused<span> by a change in speed. For example, when </span>light travels<span> from air into water, it slows down, causing it to continue to travel at a </span>different<span> angle or direction.</span>
Answer:
a. by moving the book without acceleration and keeping the height of the book constant
Explanation:
FOR CONSTANT KINETIC ENERGY:
The kinetic energy of a body depends upon its speed according to its formula:
ΔK.E = (1/2)mΔv²
So, for Δv = 0 m/s
ΔK.E = 0 J
So, for keeping kinetic energy constant, the books must be moved at constant speed without acceleration.
FOR CONSTANT POTENTIAL ENERGY:
The potential energy of a body depends upon its height according to its formula:
ΔP.E = mgΔh
So, for Δh = 0 m/s
ΔP.E = 0 J
So, for keeping potential energy constant, the books must be moved at constant height.
So, the correct option is:
<u>a. by moving the book without acceleration and keeping the height of the book constant</u>
Well she drove 30 more miles to the east than the west but I don’t understand what u are asking