It can't be less than 250 N or the cart wouldn't move at all. That means there is only 1 answer. It's between not enough info or 250 N. The answer is 250 N. If it was any more, there would be acceleration.
Answer:
0.37sec
Explanation:
Period of oscillation of a simple pendulum of length L is:
T
=
2
π
×
√
(L
/g)
L=length of string 0.54m
g=acceleration due to gravity
T-period
T = 2 x 3.14 x √[0.54/9.8]
T = 1.47sec
An oscillating pendulum, or anything else in nature that involves "simple harmonic" (sinusoidal) motion, spends 1/4 of its period going from zero speed to maximum speed, and another 1/4 going from maximum speed to zero speed again, etc. After four quarter-periods it is back where it started.
The ball will first have V(max) at T/4,
=>V(max) = 1.47/4 = 0.37 sec
Explanation:
Check out the picture I drew for a minute before reading this...
B. Distance [the red line] is a scalar quantity reflecting how far an object has traveled. Displacement [the green line] is a vector quantity reflecting how far an object has moved from a point. The key difference is that distance can be any sort of path while displacement is always a vector (or a straight line) between a starting point and a finishing point. Sometimes distance and displacement are equal to one another. Sometimes you have a distance traveled, but zero displacement overall; which is what's going on in your question.
A. The distance that the racecar traveled is indeed 500m. But at the end of the lap, it is right back where it started. So overall, it has been displaced 0m.
<span>1. sandpaper against wood.
2. rubber mat against the floor of the shower stall.
</span><span># High coefficient of friction describes the degree of interaction between two surfaces. . A higher coefficient of friction indicates that two surfaces in contact have a greater resistance.</span>
<span>Inertia keeps us orbiting because any object with mass has the tendency to resist changes to their direction and speed of movement. Combine that with the interaction of the gravitational attraction of the sun, and that is what keeps Earth in orbit. The sun’s gravitational force is one that is proportional to Earth’s mass, and it acts in a way that is almost exactly perpendicular to Earth’s motion. This keeps Earth from spinning into the sun or far away from it.</span>