Answer:
d = 2.54 [m]
Explanation:
Through the theorem of work and energy conservation, we can find the work that is done. Considering that the energy in the initial state is only kinetic energy, while the energy in the final state is also kinetic, however, this is zero since the body stops.

where:
W = work [J]
Ek1 = kinetic energy at initial state [J]
Ek2 = kinetic energy at the final state = 0.
We must remember that kinetic energy can be calculated by means of the following expression.
![\frac{1}{2} *m*v^{2}-W=0\\W= \frac{1}{2} *4*(5)^{2}\\W= 50 [J]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D-W%3D0%5C%5CW%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2A4%2A%285%29%5E%7B2%7D%5C%5CW%3D%2050%20%5BJ%5D)
We know that work is defined as the product of force by distance.

where:
F = force [N]
d = distance [m]
But the friction force is equal to the product of the normal force (body weight) by the coefficient of friction.
![f=m*g*0.5\\f = 4*9.81*0.5\\f = 19.62 [N]](https://tex.z-dn.net/?f=f%3Dm%2Ag%2A0.5%5C%5Cf%20%3D%204%2A9.81%2A0.5%5C%5Cf%20%3D%2019.62%20%5BN%5D)
Now solving the equation for the work.
![d=W/F\\d = 50/19.62\\d = 2.54[m]](https://tex.z-dn.net/?f=d%3DW%2FF%5C%5Cd%20%3D%2050%2F19.62%5C%5Cd%20%3D%202.54%5Bm%5D)
The statement '<span>The more particles a substance has at a given temperature, the more thermal energy it has' is true. </span><span>The
kinetic molecular theory of gases has three main laws and one of them is the
average kinetic energy of the particles in a gas. The average kinetic energy of
the gas particles is the behavior and movement it does in the surroundings. It
is directly proportional to temperature wherein if you increase the
temperature, the kinetic energy of a particle also increases. It will also
decrease its movement or its kinetic energy if the temperature lowers. </span>
Answer:
when the reflecting surface is plain and without even small hurdles that are not the visible by our naked eyes. Eg : plain mirror
Explanation:
<span>It tells how hot it really feels when the relative humidity is factored in with the actual air temperature.
hope this helps</span>
They'll vibrate at their characteristic resonant frequency. That depends on the material the object is made of and its shape.