The mass of a particle is 2.2x10⁻¹⁵ kg
Consider smoke particles as an ideal gas
The translational RMS speed of the smoke particles is 2.45x10⁻³ m/s.
<em>v= √3kT/m</em>
<em>where k= 1.38x10⁻²³J/K, T is 288K, and m is the mass of the smoke particle</em>
<em>2.45x10⁻³ = √3x1.38x10⁻²³x288/m</em>
<em>m= 2.2x10⁻¹⁵ kg</em>
Therefore, the mass of a particle is 2.2x10⁻¹⁵ kg.
To learn more about the translational root mean square speed of gases, visit brainly.com/question/6853705
#SPJ4
Remember, half of the energy in an EM wave is in the E field, the rest is in the B field.
Thus, multiply E field energy by 2.
To calculate the energy of the wave you must then use the following equation: W = A*t*c*2*(1/2*E^2*Eo). Where, A = Area, t = time, c = speed of light (which is a constant), E = Electric field, E0 = vacuum permittivity (8.85*10^-12 Nm^2/C^2). Substituting W =(0.320)*(26)*(3*10^8)*(2)*((1/2)*(1.95*10^-2)^2*(8.854*10^-12)) = 8.40*10^-6 J
Answer:
Acceleration (b) not sure tho
Explanation:
Answer:
Ok so there are many ways to go at this.
you can get a zip lock bag and put a bunch of plastic around the egg inside the bag. (image down below)
Just anything to slow down the descent speed.
Cushion the egg so that something other than the egg itself absorbs the impact of landing.
Explanation: