1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sophie [7]
3 years ago
6

Triangle ABC has vertices at A(-2,-3), B(6,-3), C (-1,5). Answer the following and round your answers to

Mathematics
1 answer:
nirvana33 [79]3 years ago
7 0

Answer:

b.) area of triangle= 1/2 base x height

A to B(base)= 8

height= 8

8 × 8= 64

64÷ 2= 32

area of the triangle= 32

I think this is correct aha

You might be interested in
What is the value of n in the equation 2.3 × 10 9power = (1 × 10 3power)(2.3 × 10n)
Amanda [17]
Hello,

2.3 x 10^9 = ( 1 x 10^3) ( 2.3 x 10^n) 

Solution:

Take the logarithm of both sides of the equation to remove the variable from the exponent. 

n=6


Faith xoxo
7 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%281-x%5E%7B2%7D%20%29%5E%7B3%2F2%7D%20%7D%20%5C%2C%20dx" id="TexFo
Ludmilka [50]

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Read 2 more answers
Mr miller buys a new car for 25,000. he will pay a sales tax of $0.07 for every dollar of the price. he will pay a property tax
bezimeni [28]

Answer:

Step-by-step explanation:

Sales tax          25000(0.07)                   = $1,750.00

Property tax    (25000 / 1000)(14.62) <u>=  + $  365.50</u>

Total tax                                                      $  2115.50

8 0
3 years ago
What is the answer in system of equations y=4x + 13 and y=6x +19
mariarad [96]

Answer:

X=-3, Y=1

Step-by-step explanation:

Y=4x+13

Y=6x+19

4x+13=6x+19

-2x=6

X=-3

Y=1

3 0
3 years ago
For a population with = 100 and = 20, what is the x value corresponding to z = 1.50?
mafiozo [28]

For a population with mean (μ) = 100 and standard deviation (σ) = 20, the X value corresponding to z = 1.50 is 130.

<h3>What is a z-score?</h3>

A z-score is also referred to as a standard score and it's a measure of the distance between a raw score and the mean, when standard deviation units are used.

<h3>How to determine the value of x?</h3>

In Statistics, the standardized z-score is giving by this formula:

Z=\frac{\bar{x}\;-\;\mu}{ \sigma }

Making x the subject of formula, we have:

x = Zσ + μ

Substituting the given parameters into the formula, we have;

x = 1.50(20) + 100

x = 30 + 100

x = 130.

Read more on z-scores here: brainly.com/question/4302527

#SPJ4

Complete Question:

For a population with μ= 100 and σ = 20, what is the X value corresponding to z = 1.50?

30

101.5

115

130

6 0
2 years ago
Other questions:
  • A satilitle makes 4 revolutions in one day. How many revolutions would it make in 6 1/2 days
    13·1 answer
  • six years ago,brett bought 1,525 worth of cell phone company since then the value of the stock has decreased at an average rate
    5·1 answer
  • Sam needs 5/6 cups of mashed bannanas and 3/4 cups of strawberries.He wants to see if he needs more bannanas or strawberries.How
    6·1 answer
  • How do I do this,I can't seem to get the answer
    11·1 answer
  • If the sum of first 9 terms of an A.P is equal to sum of its first 11 terms, then what is the sum of its 20 terms?
    15·2 answers
  • at the ring toss booth in a carnival 8 people lost and forty people won. how many times as many people won as lost?
    8·1 answer
  • There is 2 parts. but , help​
    14·1 answer
  • A consumer electronics company is comparing the brightness of two different types of picture tubes for use in its television set
    6·1 answer
  • Vanya collects vintage albums. Each storage unit holds 16 albums. She gave 3 albums to her cousin as a graduation present. Which
    12·2 answers
  • Jesse needs to wrap the present shown below. How much wrapping paper would he need?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!