Answer:
a) molarity of CCl3F = 1.12 × 10^-11 mol/dm³
Molarity of CCl2F2 = 2.20 × 10^-11 mol/dm³
B) molarity of CCL3F = 7.96 × 10 ^-13 mol/dm³
Molarity of CCl2F2 = 1.55 × 10^-12 mol/dm³
Explanation:
Using the ideal gas equation:
PV = nRT
Further explanations are found in the attachment below.
A good night to see him again soon as I have to work tomorrow morning and I’m just gonna let go out and get it out and then I’ll head out and I can do that and then I’ll
Answer:
(a) 13.7 g.
(b) 28.91 g.
Explanation:
- molality (m) is the no. of moles of solute dissolved in 1.0 kg of solvent.
∴ m = (no. of moles of solute)/(mass of water (kg))
<em>∴ m = (mass/molar mass of solute)/(mass of water (kg)).</em>
<em />
<u><em>(a) Calculate the mass of CaCl₂·6H₂O needed to prepare 0.125 m CaCl₂(aq) by using 500. g of water.</em></u>
∵ m = (mass/molar mass of CaCl₂·6H₂O)/(mass of water (kg)).
m = 0.125 m, molar mass of CaCl₂·6H₂O = 219.0757 g/mol, mass of water = 500.0 g = 0.5 kg.
∴ 0.125 m = (mass of CaCl₂·6H₂O / 219.0757 g/mol)/(0.5 kg).
∴ mass of CaCl₂·6H₂O = (0.125 m)(219.0757 g/mol)(0.5 kg) = 13.7 g.
<u><em>(b) What mass of NiSO₄·6H₂O must be dissolved in 500. g of water to produce 0.22 m NiSO₄(aq)?</em></u>
∵ m = (mass/molar mass of NiSO₄·6H₂O)/(mass of water (kg)).
m = 0.22 m, molar mass of NiSO₄·6H₂O = 262.84 g/mol, mass of water = 500.0 g = 0.5 kg.
∴ 0.125 m = (mass of NiSO₄·6H₂O / 262.84 g/mol)/(0.5 kg).
∴ mass of NiSO₄·6H₂O = (0.22 m)(262.84 g/mol)(0.5 kg) = 28.91 g.
Answer:

Explanation:
Hello there!
In this case, according to the given chemical reaction:
2 Al + 3 Cl2 --> 2 AlCl3
Whereas there is a 2:3 mole ratio of aluminum to chlorine; it will be possible for us to calculate the required grams of aluminum by using the equality 22.4 L = 1 mol, the aforementioned mole ratio and the atomic mass of aluminum (27.0 g/mol) to obtain:

Regards!