Answer:
d) cut the large sized Cu solid into smaller sized pieces
Explanation:
The aim of the question is to select the right condition for that would increases the rate of the reaction.
a) use a large sized piece of the solid Cu
This option is wrong. Reducing the surface area decreases the reaction rate.
b) lower the initial temperature below 25 °C for the liquid reactant, HNO3
Hugher temperatures leads to faster reactions hence this option is wrong.
c) use a 0.5 M HNO3 instead of 2.0 M HNO3
Higher concentration leads to increased rate of reaction. Hence this option is wrong.
d) cut the large sized Cu solid into smaller sized pieces
This leads to an increased surface area of the reactants, which leads to an increased rate of the reaction. This is the correct option.
Answer:
x = 1, -7.5
Explanation:
2x² + 13x = 15
Divide the left side of the equation by 2
2(x² + 6.5x) = 15
Divide 6.5 by 2 and square the quotient
6.5/2 = 3.25
3.25² = 10.5625
Add 10.5625 to the left side
2(x² + 6.5x + 10.5625) = 15
Since you have a 2 outside the parentheses, you will be adding 10.5625•2 to the right side.
10.5625 • 2 = 21.125
2(x² + 6.5x + 10.5625) = 36.125
To factor (x² + 6.5x + 10.5625), add b/2 to x
b/2 = 6.5/2 = 3.25
2(x + 3.25)² = 36.125
Divide by 2
(x + 3.25)² = 18.0625
Square root.
(x + 3.25) = √18.0625
x + 3.25 = ±4.25
Subtract 3.25.
x = 4.25 - 3.25 = 1
x = -4.25 - 3.25 = -7.5
x = 1, -7.5
Answer:
Explanation:
The wavelenght of a radiation is inversely proportional to its frequency. It can be estimated by the following formula:
Where:
is the wavelenght
is the frequency
is the speed of light (arroung 300000 km/s)
<span>This is due to the fact that the air pressure in that certain section of Earth’s atmosphere decreased. As density of gas particles decreases as air pressure decreases. Therefore, density of gas particles and air pressure have a direct relationship. An increase in air pressure would then effect to an increase in gas particles. </span>