Answer:
Yes. Example: <u>Sulfur hexafluoride (SF₆) molecule</u>
Explanation:
According to the octet rule, elements tend to form chemical bonds in order to have <u>8 electrons in their valence shell</u> and gain the stable s²p⁶ electronic configuration.
However, this rule is generally followed by main group elements only.
Exception: <u>SF₆ molecule</u>
In this molecule, six fluorine atoms are attached to the central sulfur atom by single covalent bonds.
<u>Each fluorine atom has 8 electrons in their valence shells</u>. Thus, it <u>follows the octet rule.</u>
Whereas, there are <u>12 electrons around the central sulfur atom</u> in the SF₆ molecule. Therefore, <u>sulfur does not follow the octet rule.</u>
<u>Therefore, the SF₆ molecule is known as a </u><u>hypervalent molecule</u><u> or expanded-valence molecule.</u>
Answer:
See explanation
Explanation:
The compound ClO2 has 19 valence electrons. ClO2 is a bent molecule with tetrahedral electron pair geometry but has two lone pairs of electrons. This is indicated by the presence of four electron pairs on the outermost shell of the central atom.
The molecule has an odd number of valence electrons, hence, it is generally regarded as a paramagnetic radical. None of the proposed Lewis structures for the molecule is satisfactory because none of them obeys the octet rule.
From the images attached, one can easily see that the electron dots around the oxygen and chlorine atoms does not satisfy the octet rule in all the resonance structures shown.
The statue will weather faster because of more surface area.
Answer:
Option B. Malleable, Conductor, High melting point, Lustrous
Explanation:
Mg has a higher melting point because of the strong electrostatic force of attraction between the magnesium ions (Mg^2+). The rest properties listed are all general properties of metals