The new pressure would be = 4.46 atm
<h3>Further explanation</h3>
Given
V₁=6.7 L(at STP, 1 atm 273 K)
V₂=1.5 L
Required
The new pressure
Solution
Boyle's Law
At a constant temperature, the gas volume is inversely proportional to the pressure applied

P₂ = (P₁V₁)/V₂
P₂ = (1 atm x 6.7 L)/1.5 L
P₂ = 4.46 atm
The total pressure of the mixture of gases is equal to the sum of the pressure of each gas as if it is alone in the container. The partial pressure of a component of the mixture is said to be equal to the product of the total pressure and the mole fraction of the component in the mixture.
Partial pressure of hydrogen gas = 1.24 atm x .25 = 0.31 atm
Partial pressure of the remaining = 1.24 atm x (1-.25) = 0.93 atm
Answer:
Changes in climate can result in impacts to local air quality. Atmospheric warming associated with climate change has the potential to increase ground-level ozone in many regions, which may present challenges for compliance with the ozone standards in the future.
Molarity: M = #moles of solute / liters of solution
# moles = mass / molar mass
Molar mass calculation
Barium hydroxide = Ba (OH)2
Atomic masses
Ba = 137.4 g/mol
O=16 g/mol
H=1 g/mol
Molar mass of Ba (OH)2 = 137.4 g/mol + 2*16g/mol + 2*1 g/mol = 171.4 g/mol
# mol = 25.0g/171.4 g/mol = 0.146 mol
For the volume of water use the fact that the density is 1g/ml., so 120 g = 120 ml = 0,120 liters.
M = 0.146mol / 0.120 liters = 1.22 mol/liter
The Answer Should Be Electrons.