Answer:
Option B. +3 and +6
Explanation:
<em>Zeff</em> = <em>z - s</em>
where <em>z</em> is the atomic number, <em>s</em> is the number of shielding(non-valence) electrons
For Boron, electronic configuration is 1s²2s³.
z = 5, s = 2
Zeff = 5 - 2 = +3
For Oxygen, electronic configuration is 1s²2s²2p⁴
z = 8, s = 2
Zeff = 8 - 2 = +6
Answer:
option C= patterns
Explanation:
The periodic table is helpful to identify the element readily. All the elements are arranged properly. The elements with same physical and chemical properties are placed in same group and period. Periodic table is also helpful to predict the properties of those elements which are not discovered yet. This table is also very helpful to balance the chemical equations. The horizontal rows are called periods while vertical column are called groups. There are seven periods and eighteen groups are in periodic table.
Trends in periodic table:
As we move left to right in a period the atomic radius is decreases with increase of atomic number. The ionization energy goes to increases from left to right in period because of greater hold of nuclear charge on valance electron, so that's way more energy is required to overcome this charge and to make the atom ionic.
From left to right in period electron affinity and electronegativity also increases.
As we move top to bottom in group ionization energy decreases with increase of atomic number because of large atomic radius. The valance electron require less energy to move free. The electron affinity and electronegativity also decreases from top to bottom.
Q) What is different between an ionic bond and a covalent bond?
A) An ionic bond is formed between a metal and a non-metal. ... Covalent bonding is a form of chemical bonding between two non metallic atoms which is characterized by the sharing of pairs of electrons between atoms and other covalent bonds.
Answer:
P₂ = 130.18 kPa
Explanation:
In this case, we need to apply the Gay-Lussack's law assuming that the volume of the container remains constant. If that's the case, then:
P₁/T₁ = P₂/T₂ (1)
From here, we can solve for the Pressure at 273 K:
P₂ = P₁ * T₂ / T₁ (2)
Now, all we need to do is replace the given data and solve for P₂:
P₂ = 340 * 273 / 713
<h2>
P₂ = 130.18 kPa</h2>
Hope this helps
B)Buenos Aires was the city near the epicenter :)