Answer:
111.15 g are required to prepare 500 ml of a 3 M solution
Explanation:
In a 3 M solution of Ca(OH)₂ there are 3 moles of Ca(OH)₂ per liter solution. In 500 ml of this solution, there will be (3 mol/2) 1.5 mol Ca(OH)₂.
Since 1 mol of Ca(OH)₂ has a mass of 74.1 g, 1.5 mol will have a mass of
(1.5 mol Ca(OH)₂ *(74.1 g / 1 mol)) 111.15 g. This mass of Ca(OH)₂ is required to prepare the 500 ml 3 M solution.
Answer:
The removal of one or more electrons from a neutral atom results in a cation.
Explanation:
When you remove electrons from a neutral atom, the atom becomes more positive. Electrons have a negative charge and the protons inside of the nucleus have a positive charge. When electrons are removed, the positive charges from the protons outweigh the negative charges. This results in a positively charged atom, called a cation.
since the unit for the heat of fusion is kJ/mol, you're going to have to convert the grams into moles in order to cancel out the unit. After that, you can solve like normal.