Answer: The volume for 0.850 mol of
from a
solution is 1700 mL.
The volume of 30.0 g of LiOH from a 2.70 M LiOH solution is 464 mL.
Explanation:
Molarity is the number of moles of solute present in a liter of solution.
- As given moles of
are 0.850 mol and molarity of
solution is 0.5 M. Hence, its volume is calculated as follows.

Therefore, the volume for 0.850 mol of
from a
solution is 1700 mL.
- As given mass of LiOH are 30.0 g from a 2.70 M LiOH (molar mass = 23.95 g/mol) solution. Hence, its number of moles are calculated as follows.

So, volume for LiOH solution is calculated as follows.

Therefore, volume of 30.0 g of LiOH from a 2.70 M LiOH solution is 464 mL.
Answer:
. A homogeneous mixture of a solid in a gas
AgNO3 + Cu → Ag + Cu( NO3 )2
balance equation
2AgNO3 + Cu → 2Ag + Cu( NO3 )2
2 : 2
1 : 1
silver metal = 4.5 mol
Wolves hunts the elk which were harming the ecosystem around the rivers. trees and animals became to comeback. and with those animals came beavers who built dams. basically the wolves help control the stability of how the animals interact.
Answer:
- Addition of NH₃(g)
- Removal of N₂(g)
- Increase of temperature
- Pressure decrease
Explanation:
According to Le Chatelier's principle, if we apply an stress to a reaction at equilibrium, the system will try to shift the equilibrium in order to decrease the stress. If we add reactants, the equilibrium will shift toward the formation of more products (to the consumption of reactants) and vice versa.
The stresses we can apply to this equilibrium are the following:
- Addition of NH₃(g) : it is a product, thus its addition will result in a shift toward reactants.
- Removal of N₂(g): it is a reactant, thus its removal from the reaction mixture will result in a shift toward reactants.
- Increase of temperature: the reaction is <u>exothermic</u>, so it releases energy. <u>Energy is a product</u>. If we add energy (increase the temperature), we are adding a product, so the equilibrium will shift toward the reactants.
- Pressure decrease: because both reactants and products are in the gas phase. A decrease in pressure shifts an equilibrium to the side of the reaction with greater number of moles of gas. In this case, the reactants side has greater number of moles of gas (1 mol + 3 moles= 4 moles) than the products side (2 moles). Thus, the equilibrum will shift toward reactants.