Answer:
Newtows first law of motion
Answer:
- When an object experiences acceleration to the left, the net force acting on this object will also be to the left.
- If the mass of the object was doubled, it would experience an acceleration of half the magnitude
Explanation:
When an object experiences acceleration to the left, the net force acting on this object will also be to the left.
From Newton's second law of motion, the acceleration of the object is given as;
a = ∑F / m
a = -F / m
The negative value of "a" indicates acceleration to the left
where;
∑F is the net force on the object
m is the mass of the object
At a constant force, F = ma ⇒ m₁a₁ = m₂a₂
If the mass of the object was doubled, m₂ = 2m₁
a₂ = (m₁a₁) / (m₂)
a₂ = (m₁a₁) / (2m₁)
a₂ = ¹/₂(a₁)
Therefore, the following can be deduced from the acceleration of this object;
- When an object experiences acceleration to the left, the net force acting on this object will also be to the left.
- If the mass of the object was doubled, it would experience an acceleration of half the magnitude
Kinetic energy is the energy possessed by an object when that object is moving in space. The higher the mass of an object or higher the speed of an object the higher the kinetic energy will be.
So to calculate the Kinetic Energy we can use the following formula
K.E=(1/2)*m*v^2
Inserting the values in formula gives:
K.E=1/2*7.26*2^2
14.52J
This is the final answer which gives the kinetic energy of the ball.
Answer:
mantle
Explanation:
Below the crust lies a layer of very hot, almost solid rock called the mantle. Beneath the mantle lies the core. The outer core is a liquid mix of iron and nickel, but the inner core is solid metal. Sometimes, hot molten rock, called magma, bursts through Earth's surface in the form of a volcano.