To solve this problem we will apply the concepts related to Orbital Speed as a function of the universal gravitational constant, the mass of the planet and the orbital distance of the satellite. From finding the velocity it will be possible to calculate the period of the body and finally the gravitational force acting on the satellite.
PART A)

Here,
M = Mass of Earth
R = Distance from center to the satellite
Replacing with our values we have,



PART B) The period of satellite is given as,




PART C) The gravitational force on the satellite is given by,




This question is asking: Why does gravity occur? why will your notebook get pulled towards you?
If you have a lump of solid at its melting point ... like ice at 32°F ...
you have to put a certain amount of heat into it just to change it
to water at 32°F. That amount of heat, that's used just to change
a solid lump into liquid without changing its temperature, is called
the heat of fusion for that substance.
The number is different for every substance.
For water, it takes 336 joules of heat to melt 1 gram of ice
into 1 gram of water, all at 32°F (0°C).
That's an enormous latent heat of fusion ... more than almost any
other known substance. That's why ice is such a good choice
when you need something to put in your drink to cool it down.
Ice absorbs a huge amount of heat before it melts and the drink
gets watered down.
Answer:
The average speed of the blood in the capillaries is 0.047 cm/s.
Explanation:
Given;
radius of the aorta, r₁ = 1 cm
speed of blood, v₁ = 30 cm/s
Area of the aorta, A₁ = πr₁² = π(1)² = 3.142 cm²
Area of the capillaries, A₂ = 2000 cm²
let the average speed of the blood in the capillaries = v₂
Apply continuity equation to determine the average speed of the blood in the capillaries.
A₁v₁ = A₂v₂
v₂ = (A₁v₁) / (A₂)
v₂ = (3.142 x 30) / (2000)
v₂ = 0.047 cm/s
Therefore, the average speed of the blood in the capillaries is 0.047 cm/s.
Compounds are formed as a result of elements that are joined and held together by strong forces called chemical bonds.