Answer:
I think it is but I don't know for sure
Explanation:
41 101001
41 is 101001 on the binary table i think
Answer:
The type and length of a lunar eclipse depend on the Moon's proximity to either node of its orbit. ... A total lunar eclipse can last up to nearly 2 hours, while a total solar eclipse lasts only up to a few minutes at any given place, due to the smaller size of the Moon's shadow.
Electromagnetic wave bc I studied that early in the year
Answer:
Star A is brighter than Star B by a factor of 2754.22
Explanation:
Lets assume,
the magnitude of star A = m₁ = 1
the magnitude of star B = m₂ = 9.6
the apparent brightness of star A and star B are b₁ and b₂ respectively
Then, relation between the difference of magnitudes and apparent brightness of two stars are related as give below: 
The current magnitude scale followed was formalized by Sir Norman Pogson in 1856. On this scale a magnitude 1 star is 2.512 times brighter than magnitude 2 star. A magnitude 2 star is 2.512 time brighter than a magnitude 3 star. That means a magnitude 1 star is (2.512x2.512) brighter than magnitude 3 bright star.
We need to find the factor by which star A is brighter than star B. Using the equation given above,



Thus,

It means star A is 2754.22 time brighter than Star B.
The mass of fuel the engine burn each second to produce a thrust of 7.66×10⁵ N is 2.5×10² kg/s.
<h3 /><h3>What is mass?</h3>
Mass can be defined as the quantity of matter contained in a body. The S.I unit of mass is kilogram(kg)
To calculate the mass the engine burns each seconds, we use the formula below.
Formual:
- M = T/v............. Equation
Where:
- M = Mass per seconds of the rocket
- T = Thrust
- v = Velocity
From the question,
Given:
- T = 7.66×10⁵ N
- v = 3.05×10³ m/s
Substitute these values into equation 1
- M = (7.66×10⁵)/(3.05×10³)
- M = 2.5×10² kg/s
Hence, the mass of fuel burned in each second is 2.5×10² kg/s.
Learn more about mass here: brainly.com/question/25121535
#SPJ1