Answer:
have stars that might appear to wobble
often have one star that is brighter than the other
Explanation:
A binary star system is a star system made up of mostly two stars that moves round their common fixed center.
The two orbiting stars are gravitationally bonded to one another and they move round each other.
Most binary stars might appear wobble. One of the stars often appears brighter than the other.
This problem is providing the basic dissociation constant of ibuprofen (IB) as 5.20, its pH as 8.20 and is requiring the equilibrium concentration of the aforementioned drug by giving the chemical equation at equilibrium it takes place. The obtained result turned out to be D) 4.0 × 10−7 M, according to the following work:
First of all, we set up an equilibrium expression for the given chemical equation at equilibrium, in which water is omitted for it is liquid and just aqueous species are allowed to be included:
![Kb=\frac{[IBH^+][OH^-]}{[IB]}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BIBH%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BIB%5D%7D)
Next, we calculate the concentration of hydroxide ions and the Kb due to the fact that both the pH and pKb were given:

![[OH^-]=10^{-5.8}=1.585x10^{-6}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-5.8%7D%3D1.585x10%5E%7B-6%7DM)

Then, since the concentration of these ions equal that of the conjugated acid of the ibuprofen (IBH⁺), we can plug in these and the Kb to obtain:
![6.31x10^{-6}=\frac{(1.585x10^{-6})(1.585x10^{-6})}{[IB]}](https://tex.z-dn.net/?f=6.31x10%5E%7B-6%7D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B%5BIB%5D%7D)
Finally, we solve for the equilibrium concentration of ibuprofen:
![[IB]=\frac{(1.585x10^{-6})(1.585x10^{-6})}{6.31x10^{-6}}=4.0x10^{-7}](https://tex.z-dn.net/?f=%5BIB%5D%3D%5Cfrac%7B%281.585x10%5E%7B-6%7D%29%281.585x10%5E%7B-6%7D%29%7D%7B6.31x10%5E%7B-6%7D%7D%3D4.0x10%5E%7B-7%7D)
Learn more:
(Weak base equilibrium calculation) brainly.com/question/9426156
Answer:
Explanation:
diffusion has already occurred
Answer:
hope it helps you a little
Answer:
1.
643.21g 1 mol 6.022^23
262.87 g 1 mol
= 1.4735E24 [Mg3(PO4)2]
2.
4.061x10^24 1mol 22.4 (L)
6.022^23 1mol
= 151 liters H2O2
3.
479.3g 1 mol 6.022^23
18.02g 1mol
= 1.60E25 H20 atoms
4.
80.34L 1mol 164.1
22.4L 1mol
588.6g Ca(NO3)2
5.
893.7g 1mol 22.4
44.01g 1mol
= 427 L CO2 or 427.4
6.
5.39 x 10^25 1mol 78.01
6.022^23 1mol
= 6980g Al(OH)3
hope this helps!! :)