Answer:
Alkenes, Markovnikov's, Alkenes, Alkyl halides, and less.
Explanation:
Alkenes must undergo addition because they have easily broken π bonds.
Markovnikov's rule states in the addition of HX to an unsymmetrical alkene, the H atom bonds to the less substituted carbon atom.
Alkenes are unsaturated hydrocarbons because they have fewer than the maximum number of hydrogen atoms per carbon.
Alkyl halides have good leaving groups and therefore readily undergo substitution and elimination reactions.
In hydroboration, the boron atom bonds to the less substituted carbon.
Answer:
1.02 × 10⁶ g
Explanation:
Step 1: Given data
- Volume of the balloon (V): 5400 m³
- Absolute pressure (P): 1.10 × 10⁵ Pa
- Molar mass of He (M): 4.002 g/mol
Step 2: Convert "V" to L
We will use the conversion factor 1 m³ = 1000 L.
5400 m³ × 1000 L/1 m³ = 5.400 × 10⁶ L
Step 3: Convert "P" to atm
We will use the conversion factor 1 atm = 101325 Pa.
1.10 × 10⁵ Pa × 1 atm / 101325 Pa = 1.09 atm
Step 4: Calculate the moles of He (n)
We will use the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.09 atm × 5.400 × 10⁶ L / 0.08206 atm.L/mol.K × 280 K
n = 2.56 × 10⁵ mol
Step 5: Calculate the mass of He (m)
We will use the following expression.
m = n × M
m = 2.56 × 10⁵ mol × 4.002 g/mol
m = 1.02 × 10⁶ g
Specific heat capacity is the required amount of heat per unit of mass in order to raise teh temperature by one degree Celsius. It can be calculated from this equation: H = mCΔT where the H is heat required, m is mass of the substance, ΔT is the change in temperature, and C is the specific heat capacity.
H = m<span>CΔT
2501.0 = 0.158 (C) (61.0 - 32.0)
C = 545.8 J/kg</span>·°C