<span>HCl<span>(aq)</span>+NaOH<span>(aq)</span>→NaCl<span>(aq)</span>+<span>H2</span>O<span>(l)</span></span>
As you can see here, one mole of acid neutralizes one mole of base.
We use the concentration equation, which states that,
<span>c=<span>nv</span></span>
<span>
<span>
<span>
n is the number of moles
</span>
<span>
v is the volume of solution
</span>
</span>
</span>
Rearranging for moles, we get,
<span>n=c⋅v</span>
So, we have:
<span><span>n<span>NaOH</span></span>=0.1 M⋅0.05 L</span>
<span>=0.005 mol</span>
Since one mole of acid neutralizes one mole of base, then we must have: <span><span>n<span>HCl</span></span>=<span>n<span>NaOH</span></span></span>.
And so,
<span><span>c<span>HCl</span></span>=<span><span>n<span>HCl</span></span><span>v<span>HCl</span></span></span></span>
<span>=<span><span>0.005 mol</span><span>0.03 L</span></span></span>
<span>≈0.17 <span>M</span></span>
Answer:
The pressure, when the volume is reduced to 7.88L, is 846 torr (option A)
Explanation:
Step 1: Data given
The temperature of a gas = 25.0°C
AT 25 °C the gas occupies a volume of 10.0L and a pressure of 667 torr.
The volume reduces to 7.88 L but the temperature stays constant.
Step 2: Boyle's law
(P1*V1)/T1 = (P2*V2)/T2
⇒ Since the temperature stays constant, we can simplify to:
P1*V1 = P2*V2
⇒ with P1 = the initial pressure 667 torr
⇒ with V1 = the initial volume = 10.0 L
⇒ with P2 = the final pressure = TO BE DETERMINED
⇒ with V2 = the final volume = 7.88L
P2 = (P1*V1)/V2
P2 = (667*10.0)/7.88
P2 = 846 torr
The pressure, when the volume is reduced to 7.88L, is 846 torr (option A)
Answer:
It is known as asymmetric key cryptography it is also called public key cryptography.
Explanation:
Asymmetric key cryptography method makes use of two keys.One is used for encryption and the second one for decryption. The public key serves to encrypt plain text or verify a digital signature, while the private key is used to decrypt or decipher the encrypted text or to create a digital signature.
Water is the only common substance that when you freeze it, it's volume INCREASES.
When the pipe originally held the "all full" volume and the the water expanded, it put a tremendous amount of pressure on the pipe. Enough pressure and the pipe would burst.
Answer: acetone molecule ( CH₃-CO-CH₃)
Explanation:
1) Acetone is CH₃-CO-CH₃
2) That is a molecule (build up of covalent bonds).
3) When dissolved, covalent bonded compounds remain as separate molecules, then it is said that the major species present in the solution is the molecule. The molecules of acetone are surrounded (sovated) by the molecules of water.
This as opposed to the case of ionic compounds that ionize. When a compound as NaCl dissolves in water, it ionizes completely, so the major speceies are not NaCl formulas, but the ions Na⁺ and Cl⁻, not molecules.
That leads to the answer: the major species present when acetone is dissolved in water is the molecules of acetone (you do not need to state the fact that the molecules of water are part of the solution, because that is not the target of the question).