Answer:
5.56g of FeCl2 can be produced
Explanation:
To solve this question we must find the moles of each reactant. With the moles and the chemical equation we can find limiting reactant. With limiting reactant we can find the moles of FeCl2 and its mass as follows:
<em>Moles HCl:</em>
1.5L * (0.25mol / L) = 0.375 moles HCl
<em>Moles Fe -Molar mass: 55.845g/mol-</em>
2.45g * (1mol / 55.845g) = 0.0439 moles Fe
For a complete reaction of 0.375 moles HCl are needed:
0.375 moles HCl * (1mol Fe / 2mol HCl) = 0.1875 moles Fe
As there are just 0.0439 moles Fe, <em>Fe is limiting reactant</em>
<em />
1mol of Fe produce 1 mole of FeCl2, 0.0439 moles Fe produce 0.0439 moles of FeCl2. The mass is:
<em>Mass FeCl2 -Molar mass: 126.751g/mol:</em>
0.0439 moles Fe * (126.751g / mol) =
<h3>5.56g of FeCl2 can be produced</h3>
Answer:
34.9103 or 34.9 g
Explanation:
Remember Density is a broken heart: m/v.
In this scenario (Let x = # of grams in the sample of gasoline),
D = 0.7198 g/mL = x g / 48.5 mL
So,
(0.7198 g/mL) * (48.5 mL) = x g
x g = 34.9103 = 34.9 g (Accounting for Significant Figures)
Explanation:
To solve this question, we need to use the following formula:
M = n/V
So:
M = ??
n = 2.634 mol
V = 25.2 L
M = 2.634/25.2
M = 0.105 mol/L
Answer: a. 0.105
Answer:
A. Methanol
B. 2-chloropropan-1-ol
C. 2,2-dichloroethanol
D. 2,2-difluoropropan-1-ol
Explanation:
Primary alcohols are stronger acids than secondary alcohols which are stronger than tertiary alcohols.
This trend is so because of the stability of the alkoxide ion formed(stabilising the base, increases the acidity). A more stabilised alkoxide ion is a weaker conjugate base (dissociation of an acid in water).
By electronic factors, When there are alkyl groups donating electrons, the density of electrons on th O- will increase a d thereby make it less stable.
By stearic factors, More alkyl group bonded to the -OH would mean the bulkier the alkoxide ion which would be harder to stabilise.
Down the group of the periodic table, basicity (metallic character) decreases as we go from F– to Cl– to Br– to I– because that negative charge is being spread out over a larger volume that is electronegativity decreases down the group.
Electronegative atoms give rise to inductive effect and a decrease in indutive effects leads to a decrease in acidity. Therefore an Increasing distance from the -OH group lsads to a decrease in acidity.
From above,
A. Methanol
B. 2-chloropropan-1-ol
C. 2,2-dichloroethanol
D. 2,2-difluoropropan-1-ol
Answer:
iron(III) Thus, Fe2+ is called the iron(II) ion, while Fe3+ is called the iron(III) ion. This system is used only for elements that form more than one common positive ion. We do not call the Na+ ion the sodium(I) ion because (I) is unnecessary.
Explanation:
Hope This Helps
Have A Great Day
~Zero~