The ratio of the turns to the voltage should be equal
i.e: 200/120 = t/12
so the secondary coil should have 20 turns
Answer:
The initial velocity of the ball is <u>39.2 m/s in the upward direction.</u>
Explanation:
Given:
Upward direction is positive. So, downward direction is negative.
Tota time the ball remains in air (t) = 8.0 s
Net displacement of the ball (S) = Final position - Initial position = 0 m
Acceleration of the ball is due to gravity. So,
(Acting down)
Now, let the initial velocity be 'u' m/s.
From Newton's equation of motion, we have:

Plug in the given values and solve for 'u'. This gives,

Therefore, the initial velocity of the ball is 39.2 m/s in the upward direction.
A sample of nitrogen gas has a volume of 5.0 ml at a pressure of 1.50 atm. what is the pressure exerted by the gas if the volume increases to 30.0 ml, at constant temperature is 0.25atm.
On constant temperature, the pressure and volume relation become constant before and after the change in quantitities have occurred.
According to Boyle's Law,
P₁V₁ = P₂V₂
where, P₁ is pressure exerted by the gas initially
V₁ is the volume of gas initially
P₂ is pressure exerted by the gas finally
V₂ is the volume of gas finally
Given,
P₁ = 1.5 atm
V₁ = 5 ml
V₂ = 30 ml
P₂ =?
On substituting the given values in the above equation:
P₁V₁ = P₂V₂
1.5 atm × 5 ml = P₂ × 30 ml
P₂ = 0.25 atm
Hence, pressure exerted by the gas is 0.25atm.
Learn more about Boyle's Law here, brainly.com/question/1437490
#SPJ4
To develop this problem it is necessary to apply the concepts related to the kinematic equations of motion. And from the speed found the relationships between wavelength, frequency and last of the period (which is inversely proportional to the frequency)
PART A) We know that the velocity of a body or a wave is equivalent to the distance traveled over a time interval. So,

Where
x = Distance
t = time


PART B) The frequency would then be defined as

Where



PART C) Finally the period is defined as




Explanation:
Given that,
Force acting on the child, F = 310 N
Length of the ropes, d = 2.1 m
We need to find the gravitational potential energy of the child–Earth system relative to the child's lowest position when the ropes are horizontal. The potential energy is simply given by :

Hence, this is the required solution.