Forehead, Feet and Elbows, if the person is perfect health condition.
Answer:
a) ω = 9.86 rad/s
b) ac = 194. 4 m/s²
c) minimum coefficient of static friction, µs = 19.8
Explanation:
a) angular speed, ω = 2πf, where f is frequency of revolution
1 rps = 6.283 rad/s, π = 3.142
ω = 2 * 3.14 * 0.25 * 6.28
ω = 9.86 rad/s
b) centripetal acceleration, a = rω²
where r is radius in meters; r = 200 cm or 2 m
a = 2 * 9.86²
a = 194. 4 m/s²
c) µs = frictional force/ normal force
frictional force = centripetal force = ma; where a is centripetal acceleration
normal force = mg; where g = 9.8 m/s²
µs = ma/mg = a/g
µs = 194.4 ms⁻²/9.8 ms⁻²
c) minimum coefficient of static friction, µs = 19.8
Answer:
Explanation:
This is an application of Newton's second Law.
Formula
F = m * a
F = 300 N
m = 100 kg
a = ?
F = m * a
300N = 100 kg * a Divide by 100
300N/100kg = a
a = 3 m/sec^2
Answer:
Explanation:
Since the wires attract each other , the direction of current will be same in both the wires .
Let I be current in wire which is along x - axis
force of attraction per unit length between the two current carrying wire is given by
x 
where I₁ and I₂ are currents in the wires and d is distance between the two
Putting the given values
285 x 10⁻⁶ = 10⁻⁷ x 
I₂ = 16.76 A
Current in the wire along x axis is 16.76 A
To find point where magnetic field is zero due the these wires
The point will lie between the two wires as current is in the same direction.
Let at y = y , the neutral point lies
k 2 x
= k 2 x 
25.5y = 16.76 x .3 - 16.76y
42.26 y = 5.028
y = .119
= .12 m