Answer:
We know that for a pendulum of length L, the period (time for a complete swing) is defined as:
T = 2*pi*√(L/g)
where:
pi = 3.14
L = length of the pendulum
g = gravitational acceleration = 9.8 m/s^2
Now, we can think on the swing as a pendulum, where the child is the mass of the pendulum.
Then the period is independent of:
The mass of the child
The initial angle
Where the restriction of not swing to high is because this model works for small angles, and when the swing is to high the problem becomes more complex.
Answer:
(a) Acceleration of the bag will be a=16.214m/sec^2
(B) Weight of the bag will be 137.2 N
Explanation:
We have given mass of the bag m = 14 kg
Force with which bag is lifted = 227 N
(A) According to newtons law we force is equal to F = ma , here m is mass and a is acceleration
So 

(b) Acceleration due to gravity 
We know that weight is given by W = mg , here m is mass and g is acceleration due to gravity
So weight 
So weight of the bag will be 137.2 N
convergent and counterclockwise
hope it helps :)
Answer:
magnetic trains works at the principle of repel on of the advantage is that they are fast and dont really need diesel
1) According to the law of conservation of momentum ..
<span>Horiz recoil mom of gun (M x v) = horiz. mon acquired by shell (m x Vh) </span>
<span>1.22^6kg x 5.0 m/s = 7502kg x Vh </span>
<span>Vh = 1.22^6 x 5 / 7502 .. .. Vh = 813 m/s </span>
<span>Barrel velocity V .. .. cos20 = Vh / V .. ..V = 813 /cos20 .. .. ►V = 865 m/s </span>
<span>2) Using the standard range equation .. R = u² sin2θ /g </span>
<span>R = 865² x sin40 / 9.80 .. .. ►R = 49077 m .. (49 km)</span>