A tornado! I think or it could be rain
<span>12.4 g
First, calculate the molar masses by looking up the atomic weights of all involved elements.
Atomic weight manganese = 54.938044
Atomic weight oxygen = 15.999
Atomic weight aluminium = 26.981539
Molar mass MnO2 = 54.938044 + 2 * 15.999 = 86.936044 g/mol
Now determine the number of moles of MnO2 we have
30.0 g / 86.936044 g/mol = 0.345081265 mol
Looking at the balanced equation
3MnO2+4Al→3Mn+2Al2O3
it's obvious that for every 3 moles of MnO2, it takes 4 moles of Al. So
0.345081265 mol / 3 * 4 = 0.460108353 mol
So we need 0.460108353 moles of Al to perform the reaction. Now multiply by the atomic weight of aluminum.
0.460108353 mol * 26.981539 g/mol = 12.41443146 g
Finally, round to 3 significant figures, giving 12.4 g</span>
D. More collisions occur and the time required for the reaction decreases
This happens because according to collision theory, when energy (in this case, thermal energy) is applied to particles, they move/vibrate more quickly.
Answer:
The correct answer is vertebrate enzyme hydrolyze alpha-1,4 glycosidic linkage but not glucose in the beta configuration.
Explanation:
The amylase that is present inside human body is called salivary alpha amylase,an enzyme that digest the alpha-1,4-glycosidic linkages of starch but does not act on those glycosidic linkages which are present in beta configuration.
Cellulose contain beta-1,4-glycosidic linkages.That"s why it is not digested by the alpha amylase enzyme present inside the human body basically present in the saliva.