Answer:
The final volume is 3.07L
Explanation:
The general gas law will be used:
P1V1 /T1 = P2V2 /T2
V2 =P1 V1 T2 / P2 T1
Give the variables to the standard unit:
P1 = 345 torr = 345 /760 atm = 0.4539atm
T1 = -15°C = -15 + 273 = 258K
V1 = 3.48L
T2 = 36°C = 36+ 273 = 309K
P2 = 468 torr = 468 * 1/ 760 atm = 0.6158atm
V2 = ?
Equate the values into the gas equation, you have:
V2 = 0.4539 * 3.48 * 309 / 0.6158 * 258
V2 = 488.0877 /158.8764
V2 = 3.07
The final volume is 3.07L
I believe the correct answer is the second option. The type of decay that characterizes the change of nuclides to their respective daughter products would be exponential decay. This type of decay is characterized by the decrease of quantity of a material according to the equation y=ab^x.
Answer:
The molecular weight is 
Explanation:
From the question we are told that
The mass of the sample is 
The temperature is 
The volume which the gas occupied is 
The pressure is 
Generally from the ideal gas equation we have that

Here n is the number of moles of the gas while the R is the gas constant with value 

=> 
=> 
Generally the molecular weight is mathematically represented as

=> 
=> 
Since
21.2 g H2O was produced, the amount of oxygen that reacted can be obtained
using stoichiometry. The balanced equation was given: 2H₂ + O₂ → 2H₂O and
the molar masses of the relevant species are also listed below. Thus, the
following equation is used to determine the amount of oxygen consumed.
Molar mass of H2O = 18
g/mol
Molar mass of O2 = 32
g/mol
21.2 g H20 x 1 mol
H2O/ 18 g H2O x 1 mol O2/ 2 mol H2O x 32 g O2/ 1 mol O2 = 18.8444 g O2
<span>We then determine that
18.84 g of O2 reacted to form 21.2 g H2O based on stoichiometry. It is
important to note that we do not need to consider the amount of H2 since we can
derive the amount of O2 from the product. Additionally, the amount of H2 is in
excess in the reaction.</span>
Answer:
Chemical energy is converted into thermal and mechanical energy while kinetic energy into potential energy.
Explanation:
As the breakdown of food started, the chemical energy present in the food substances converted into thermal energy and mechanical energy. Thermal or heat energy is used to maintain the body's temperature while mechanical energy is used in other activities such as movement of muscles. Kinetic energy is also converted into potential energy when the object moves from top of a place such as hill.