First apply the exponent: 3 ^ 2
9
Then we do the multiplication: 4 * 9 = 36
Finally we add
8 + 36 = 44
This revolves around exact trig values - no easy way to say this, you just need to memorise them. They are there for sin cos and tan, but I will give you the main tan ones below - note this is RADIANS (always work in them when you can, everything is better):
tan0: 0
tanpi/6: 1/sqrt(3)
tanpi/4: 1
tanpi/3: sqrt(3)
tanpi/2: undefined
Now we just need to equate -2pi/3 to something we understand. 2pi/3 is 1/3 of the way round a circle, so -2pi/3 is 1/3 of the way round the circle going backwards (anticlockwise), so on a diagram we already know it's in the third quadrant of the circle (somewhere between pi and 3pi/2 rads).
We also know it is pi/3 away from pi, so we are looking at sqrt(3) or -sqrt(3) because of those exact values.
Now we just need to work out if it's positive or negative. You can look up a graph of tan and it'll show that the graph intercepts y at (0,0) and has a period of pi rads. Therefore between pi and 3pi/2 rads, the values of tan are positive. Therefore, this gives us our answer of sqrt(3).
Answer:
A linear function is written as:
y = a*x + b
Where a is the slope and b is the y-intercept.
An exponential equation is written as:
y = A*(r)^x
Where A is the initial quantity and r is the rate of growth.
If a and A are both positives, the similar characteristic of both types of functions is that as x increases, then the value of y will also increase. Then both functions are increasing functions.
They are different in how they increase, while a linear function increases at a constant rate, an exponential function increases slow at the beginning and really fast as x increases, as you can see in the image below where we compare the two types of functions, the green one is the linear function, and the blue one is the exponential function.
To determine the slope, you can use the following formula:
(y2-y1)/(x2-x1)