Hydrogen is the only atom that does not have neutron electrons in the first energy level/shell.
Answer:
its very simple ans we have 2 just multiply256
Answer:
poor hydrogen-ion donor
Explanation:
Acid dissociation constant constant chemistry is the equilibrium constant of the dissociation reaction of an acid, it is denoted by Ka. This equilibrium constant is a measure of the strength of an acid in a solution.
Note these as a rule of thumb:
When Ka is large, the dissociation of the acid is favored.
When Ka is small, the acid does not dissociate to a large extent.
Hence, a Ka of 4.3 x 10-7 shows a weak acid. A weak acid is a poor hydrogen ion donor because it does not dissociate to a large extent in solution.
<em>ANSWER</em>
The number of moles of methane is 905.32 moles
STEP-BY-STEP EXPLANATION:
Given information
The number of particles of methane = 5.45 x 10^26 particles
Let x represents the number of moles of methane
To calculate the number of moles, we will be using the below formula

Recall that, the Avogadro's constant is given as


Therefore, the number of moles of methane is 905.32 moles
Answer:
cant read the questions...
Explanation: