<em>The statement that gives the relationship between energy needed in breaking a bond and the one that is released after breakin</em>g is
The amount of energy it takes to break a bond is always less than the amount of energy released when the bond is formed.
- Bond energy can be regarded as amount of energy that is required in breaking a particular bond.
- For a bond to be broken Energy will be added and when a bond is broken there will be release of energy
- Bond breaking can be regarded as endothermic process, it is regarded as endothermic because there is a lot of energy required to be absorbed.
- Where ever a bond is broken, there must be formation of another bond
- Bond forming on the other hand can be regarded as exothermic process, since there is a release of releases energy.
Therefore, more energy is required in breaking of bond compare to energy released after breaking of bond.
Learn more at : brainly.com/question/10777799?referrer=searchResults
Answer:
A piece of gold foil was hit with alpha particles, which have a positive charge. Most alpha particles went right through. This showed that the gold atoms were mostly empty space. Some particles had their paths bent at large angles. A few even bounced backward. The only way this would happen was if the atom had a small, heavy region of positive charge inside it.
Answer:
I think no C or D
if wrong correct me plsssssss
Mark me brainliest plsss
Explanation:
December 21 marks the winter solstice in the Northern Hemisphere, but in 2020 the longest night of the year is also going to be a witness to an incredible astronomic event known as the “great conjunction”. ... This rare double planet sighting–or “Great Conjunction”–can be viewed from anywhere around the globe
Rutherford performed gold foil experiment to understand that how negative and positive particles could Co exist in an atom. He bombarded alpha particles on a 0.00004 cm thick gold foil.
He proposed a planetary model of the atom and concluded following results and demonstrated that,
1. An atom produces a line spectrum.
2. An Electron revolves around the nucleus without any orbits.
3. Since most of the particles passed through the foil undeflected it means that most of the volume occupied by an atom is empty.
4. An Atom as a whole is neutral.
5. The deflection of few particles on the foil suggested that there is center of positive particles in an atom called the nucleus of the atom.
6. The complete rebounce of few particles on the gold foil suggested that the nucleus is very dense and hard.
<span>Due to limitations on typography, I will have to describe the equation instead of actually writing it.
Crude appearance.
18 18 0
F --> O + e
9 8 1
Detailed description. Each of the 3 components have both a left superscript and a left subscript which is a superscript and a subscript to the LEFT of the main figure unlike the usual right side that you see subscripts and superscripts.
The equation will be F with an 18 left superscript and a 9 left subscript to represent Florine with atomic weight of 18 and 9 protons.
Followed by a right arrow to indicate the direction the reaction is going.
Followed by the letter O with a left superscript of 18 and a left subscript of 8 to represent Oxygen with atomic weight of 18 and 8 protons.
Followed by a plus sign to indicate more.
Followed by either the lower case letter "e" or the upper case Greek character beta with a left superscript of 0 and a left subscript of 1 or +1 to represent the positron being emitted with a positive charge and an atomic weight of 0.</span>