Explanation:
When carbon atom tends to form single bonds then its hybridization is
, when carbon atom tends to form double bond then its hybridization is
and when a carbon atom is attached to a triple bond or with two double bonds then its hydridization is sp.
For example, in HCN molecule there is a triple existing between the carbon and nitrogen atom.
So, hybridization of carbon in this molecules is sp. Moreover, nitrogen atom is also attached via triple bond and it also has a lone pair of electrons. Hence, the hybridization of nitrogen atom is also sp.
Thus, we can conclude that s and p type of orbitals overlap to form the sigma bond between C and N in H−C≡N:
Answer:
the final volume of the gas is
= 1311.5 mL
Explanation:
Given that:
a sample gas has an initial volume of 61.5 mL
The workdone = 130.1 J
Pressure = 783 torr
The objective is to determine the final volume of the gas.
Since the process does 130.1 J of work on its surroundings at a constant pressure of 783 Torr. Then, the pressure is external.
Converting the external pressure to atm ; we have
External Pressure
:


The workdone W =
V
The change in volume ΔV= 
ΔV = 
ΔV = 
ΔV = 1.25 L
ΔV = 1250 mL
Recall that the initial volume = 61.5 mL
The change in volume V is 

multiply through by (-), we have:

= 1250 mL + 61.5 mL
= 1311.5 mL
∴ the final volume of the gas is
= 1311.5 mL
There are approximately 70.906
Answer:
Hey there!
This is an effort trying to clarify that not all sexually transmitted infections turn into diseases.
Let me know if this helps :)
Answer:
1.48 M
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
Mg + H2SO4 —> MgSO4 + H2
Step 2:
Determination of the number of mole of Mg in 80.0 mL of 0.200 M Mg solution. This is illustrated below:
Molarity of Mg = 0.200 M
Volume of solution = 80 mL = 80/1000 = 0.08L
Mole of Mg =?
Molarity = mole /Volume
0.2 = mole /0.08
Mole = 0.2 x 0.08
Mole of Mg = 0.016 mole.
Step 3:
Determination of the number of mole of H2SO4 that reacted. This is illustrated below:
Mg + H2SO4 —> MgSO4 + H2
From the balanced equation above,
1 mole of Mg reacted with 1 mole of H2SO4.
Therefore, 0.016 mole of Mg will also react with 0.016 mole of H2SO4.
Step 4:
Determination of the concentration of the acid.
Mole of H2SO4 = 0.016 mole.
Volume of acid solution = 10.8 mL = 10.8/1000 = 0.0108 L
Molarity =?
Molarity = mole /Volume
Molarity = 0.016/0.0108
Molarity of the acid = 1.48 M
Therefore, the concentration of acid is 1.48 M