Answer:
stochiometry works with measuring quantitative relationships and used to determine the amount of products and reactants that are produced or needed in a reaction
Democritus, theorized that atoms were specific to the material which they composed. In addition, Democritus believed that the atoms differed in size and shape, were in constant motion in a void, collided with each other; and during these collisions, could rebound or stick together.
<u>Explanation:</u>
- One of the main atomic theorists was Democritus, a Greek philosopher who lived in the fifth century BC. Democritus realized that if a stone was partitioned fifty-fifty, the two parts would have indistinguishable properties from the whole.
- Therefore, he contemplated that if the stone were to be constantly cut into littler and littler pieces at that point; sooner or later, there would be a piece that would be so little as to be inseparable. He called these small pieces of matter as "atomos", the Greek word for inseparable.
-
Democritus estimated that atoms were explicit to the material which they made. Also, Democritus accepted that the particles varied in size, were an inconsistent shape, crashed into one another; and during these impacts, could bounce back or stay together. Hence, changes in the matter were a consequence of separations or mixes of the atoms as they moved all through the void.
Answer:
Three primary reasons. First, there is simply more water-covered places than dry ground places for the animals and plants to have lived. Second, the seas are much more crowded with the kinds of life that leave fossils than the land is. Third, the process that form fossils work very well under water.
Explanation:
Answer:
The significance of "Er" in the diagram is :
B.) Threshold energy for reaction
Explanation:
Threshold energy : It is total amount of energy required by the reactant molecule to reach the transition state .
Activation energy : It is the excess energy absorbed by the molecules to reach the transition state.
<u>Activation Energy = Threshold Energy - Average Kinetic Energy</u>
<u>This means Activation energy decreases on increasing kinetic energy</u>
On increasing Temperature average kinetic energy of the molecule increases which reduces the activation energy and the reaction occur faster in that case.
Catalyst also reduces the Activation energy.
<u>Er = Threshshold energy for reaction at 30 degree</u>
<u>Ea = Activation Energy</u>
<u>The given figure shows that the threshold energy decreases on increasing the temperature</u>
<u>Only the molecule having energy greater than Er can react to form product</u>
<span>The equation that represents the process of photosynthesis
is: </span>
<span>
</span>
<span>6CO2+12H2O+light->C6H12O6+6O2+6H2O</span>
<span>
</span>
<span>Photosynthesis is the
process in plants to make their food. This involves the use carbon dioxide to
react with water and make sugar or glucose as the main product and oxygen as a
by-product. Since we are not given the mass of CO2 in this problem, we assume that we have 1 g of CO2 available. We calculate as follows:</span>
<span>
</span>
<span>1 g CO2 ( 1 mol CO2 / 44.01 g CO2 ) ( 12 mol H2O / 6 mol CO2 ) ( 18.02 g / 1 mol ) = 0.82 g of H2O is needed</span>
<span>
</span>
However, if the amount given of CO2 is not one gram, then you can simply change the starting value in the calculation and solve for the mass of water needed.
<span>
</span>