The distance between the charges is 13.86 X 10⁴m
<u>Explanation:</u>
Given:
Force, F = 1.2N
Charge, q₁ = 1.602 X 10⁻¹⁹ C
k = 8.987 X 10⁹ Nm²/C²
Distance, d = ?
According to Coulomb's law:

Substituting the value in the formula we get:

Therefore, the distance between the charges is 13.86 X 10⁴m
Answer:

Explanation:
As the 2 force directions are perpendicular (North vs West), we can calculate the magnitude of the net force using the following equation

Assuming negligible friction, from here we can calculate the acceleration in accordance to Newton's 2nd law of motion

Answer:
the answer is d
Explanation:
basically the reason i think this is the answer is because the answer that i picked in this scenario to me seems like the right one and it it the one i picked on the quiz that seemed like the right one to me and i am smart and cool and awesome
subscibe to my channel jacknjellify
The package should be dropped <u>678 m</u> short of the target.
A package dropped from a plane which is moving at a speed v, has a horizontal velocity equal to the horizontal velocity of the plane. It has a parabolic trajectory, traversing a horizontal range x while it falls through a vertical height y.
The package has no initial vertical velocity, and it falls through a height y under the action of the acceleration due to gravity g.
Use the equation,

Write an expression for t, the time taken for the package to fall through y.

Substitute 100 m for y and 9.81m/s² for g.

In the time t the package travels a horizontal distance x. The horizontal velocity of the package remains constant, since no force acts along the horizontal direction.
Therefore, the horizontal distance traveled by the package is given by,

If the package is released <u>678m</u> before the target, the package would reach the scientists working in Greenland.