True it’s true because in the book it said all that stuff
Answer:
<h2>82.94 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 28.8 × 2.88 = 82.944
We have the final answer as
<h3>82.94 N</h3>
Hope this helps you
Car A will have highest speed is 83.3m/s .
<h3>What is speed ? </h3>
The rate of change of position of an object in any direction.
The S.I unit is m/s . Speed is a scalar quantity it defines only magnitude not direction
.
speed = distance /time
In case of Car A ,
We have given distance 150Km in 3 min ,
First we have convert the distance km to m
150×1000m
then conversion of min to sec
38×60sec
speed = 15000/180
speed = 83.3m/sec
In case of Car B
we have given 800m in 150 min
lets convert the time into second
150×60
Speed = 800/150×60
speed = 0.88m/ s
In case of Car C
We have given here distance 250 Km and time in 8 hours
convert km to m
25000
and time into sec
88×60×60
speed = 0.86m/ s
Hence ,Car A has highest speed amongst them .
To learn more about speed click here
brainly.com/question/7359669
#SPJ9
Given Information:
Current = I = 20 A
Diameter = d = 0.205 cm = 0.00205 m
Length of wire = L = 1 m
Required Information:
Energy produced = P = ?
Answer:
P = 2.03 J/s
Explanation:
We know that power required in a wire is
P = I²R
and R = ρL/A
Where ρ is the resistivity of the copper wire 1.68x10⁻⁸ Ω.m
L is the length of the wire and A is the area of the cross-section and is given by
A = πr²
A = π(d/2)²
A = π(0.00205/2)²
A = 3.3x10⁻⁶ m²
R = ρL/A
R = 1.68x10⁻⁸*(1)/3.3x10⁻⁶
R = 5.09x10⁻³ Ω
P = I²R
P = (20)²*5.09x10⁻³
P = 2.03 Watts or P = 2.03 J/s
Therefore, 2.03 J/s of energy is produced in 1.00 m of 12-gauge copper wire carrying a current of 20 A
Answer:
t = 3 seconds
Explanation:
Given that,
Initial speed, u = 30 m/s
Final speed, v = 0
It slides 45 m to rest.it take the box to come to rest
We need to find how long it take the box to come to rest.
Let a be the acceleration and t is time.

Now finding time.

So, the required time is 3 seconds.