Answer:

Explanation:
The rotation rate of the man is:



The resultant rotation rate of the system is computed from the Principle of Angular Momentum Conservation:
![(90\,kg)\cdot (5\,m)^{2}\cdot (0.16\,\frac{rad}{s} ) = [(90\,kg)\cdot (5\,m)^{2}+20000\,kg\cdot m^{2}]\cdot \omega](https://tex.z-dn.net/?f=%2890%5C%2Ckg%29%5Ccdot%20%285%5C%2Cm%29%5E%7B2%7D%5Ccdot%20%280.16%5C%2C%5Cfrac%7Brad%7D%7Bs%7D%20%29%20%3D%20%5B%2890%5C%2Ckg%29%5Ccdot%20%285%5C%2Cm%29%5E%7B2%7D%2B20000%5C%2Ckg%5Ccdot%20m%5E%7B2%7D%5D%5Ccdot%20%5Comega)
The final angular speed is:

Solution
Let a cell of emf E be connected across the entire length L of a potentiometer wire . Now , if the balance point is obtained at a length l during measurement of an unknown voltage
.
The balance point is not on the potentiometer wire - this statement means that
. In that case ,
l > L
V > E
A gravity and or D angular momentum
Answer:
(a) 43.2 kC
(b) 0.012V kWh
(c) 0.108V cents
Explanation:
<u>Given:</u>
- i = current flow = 3 A
- t = time interval for which the current flow =

- V = terminal voltage of the battery
- R = rate of energy = 9 cents/kWh
<u>Assume:</u>
- Q = charge transported as a result of charging
- E = energy expended
- C = cost of charging
Part (a):
We know that the charge flow rate is the electric current flow through a wire.

Hence, 43.2 kC of charge is transported as a result of charging.
Part (b):
We know the electrical energy dissipated due to current flow across a voltage drop for a time interval is given by:

Hence, 0.012V kWh is expended in charging the battery.
Part (c):
We know that the energy cost is equal to the product of energy expended and the rate of energy.

Hence, 0.108V cents is the charging cost of the battery.