Answer:
Sr
Explanation:
because it's electronegativity is the highest.
2-Methyl-4-oxo-pentanoic acid is unlikely to produce 2-Methyl-3-butanone upon strong heating.
Upon heating, the β ketoacid becomes unstable and decarboxylates, leading to the formation of the methyl ketone.
A carboxylic acid is an organic acid that contains a carboxyl group (C(=O)OH) attached to an R-group. The general formula of a carboxylic acid is R−COOH or R−CO2H, with R referring to the alkyl, alkenyl, aryl, or other group.
Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.
Full question :
Q. Which reactant is unlikely to produce the indicated product upon strong heating?
- A) 2,2-Dimethylpropanedioic acid 2-methylpropanoic acid
- B) 2-Ethylpropanedioic acid Butanoic acid
- C) 2-Methyl-3-oxo-pentanoic acid 3-Pentanone
- D) 2-Methyl-4-oxo-pentanoic acid 2-Methyl-3-butanone
- E) 4-Methyl-3-oxo-heptanoic acid 3-Methyl-2-hexanone
Hence, option (D) is correct.
Learn more about carboxylic acid here : brainly.com/question/26855500
#SPJ4
Solution :
For the reaction :

we have
![$Ka = \frac{[\text{Tris}^- \times H_3O]}{\text{Tris}^+}$](https://tex.z-dn.net/?f=%24Ka%20%3D%20%5Cfrac%7B%5B%5Ctext%7BTris%7D%5E-%20%5Ctimes%20H_3O%5D%7D%7B%5Ctext%7BTris%7D%5E%2B%7D%24)


Clearing
, we have 
So to reach
, one must have the
concentration of the :
![$\text{[OH}^-]=10^{-pOH} = 6.31 \times 10^{-7} \text{ moles of base}$](https://tex.z-dn.net/?f=%24%5Ctext%7B%5BOH%7D%5E-%5D%3D10%5E%7B-pOH%7D%20%3D%206.31%20%5Ctimes%2010%5E%7B-7%7D%20%5Ctext%7B%20moles%20of%20base%7D%24)
So we can add enough of 1 M NaOH in order to neutralize the acid that is calculated above and also adding the calculated base.


Volume NaOH 
Tris mass 
Now to prepare the said solution we must mix:
gauge to 1000 mL with water.
Ionic bonding is the complete transfer of valence electron(s) between atoms. It is a type of chemical bond that generates two oppositely charged ions. In ionic bonds, the metal loses electrons to become a positively charged cation, whereas the nonmetal accepts those electrons to become a negatively charged anion.
No. The only thing that changed was the looks of the gasoline, not the chemical components.