1. An ion is a charged atom. A molecule is a neutrally-charged combination of atoms.
2. A molecule is a combination of atoms. It can consist of atoms from one or more elements. For example, an oxygen molecule comprises two oxygen atoms. A compound is a substance made up of a combination of atoms of different elements. For example, water is a compound of hydrogen and oxygen.
3. An electron dot diagram is a simple way of representing the bond and electronic structure of molecules. A formula is a written representation of the types and numbers of atoms in a molecule.
4. As above...a formula denotes which atoms are in a molecule and how many. For example, H2SO4 tells us there are two hydrogen atoms, one sulfur atom and four oxygen atoms in each molecule of sulfuric acid.
5. An ionic bond is a type of chemical bond that stems from electrostatic attraction between ions with opposite charges. A covalent bond is another type of chemical bond that involves sharing of electrons between atoms in order to achieve a stable electronic structure for the molecule as a whole.
Answer:
A chemist searches for new knowledge about chemicals and use it to improve the way we live. He or she may develop products such as synthetic fibers, drugs and cosmetics. Chemists create processes, including all refining and petrochemical processing, that reduce energy use and pollution.
Answer:

In which [Ag+] in negligibly small and the concentration of each reactant is 1.0 M
The answer is A) PO43- < NO3- < Na+
Explanation:
Ag+ is removed from the solution just like PO43-, so there are just 2 possible answers at this point: a or b. Then we can notice that Na3PO4 releases 3 moles of Na+ and just 1 mole of NO3-
We have 100mL of each reactant with the same concentration for both (1.0 M) so:
(0.1)(1)(3)= 0.3 mol Na+
(0.1)(1)= 0.1 mol NO3-
so PO43- < NO3- < Na+
The rate of chemical reactions generally happen <em>faster</em> when the temperature is raised.
This happens because the reactant's molecules move faster when the temperature is raised. The molecules start to bounce around more, increasing the chance for the reaction to happen, or to increase the speed at which the reaction occurs. Hope this helped.