Answer is: the % ionization of hypochlorous acid is 0.14.
Balanced chemical
reaction (dissociation) of an aqueous solution of hypochlorous acid:
HClO(aq) ⇄ H⁺(aq) + ClO⁻(aq).
Ka = [H⁺] · [ClO⁻] / [HClO].
[H⁺] is equilibrium concentration of hydrogen cations or protons.
[ClO⁻] is equilibrium concentration of hypochlorite anions.
[HClO]
is equilibrium concentration of hypochlorous acid.
Ka is the acid
dissociation constant.
Ka(HClO) = 3.0·10⁻⁸.
c(HClO) = 0.015 M.
Ka(HClO) = α² · c(HClO).
α = √(3.0·10⁻⁸ ÷ 0.015).
α = 0.0014 · 100% = 0.14%.
The answer is 10-12. The relationship of pH and [H+] is pH = -lg[H+]. And the higher pH, the stronger base is. So the strongest base has the lowest concentration of H+.
Answer:
2Au₂S₃ + 6H₂ → 4Au + 6H₂S
Explanation:
Balancing:
2Au₂S₃ + 6H₂ → 4Au + 6H₂S
The shape of the H2O molecule is a Bent Triatomic.
It isn't symmetrical.
The H2O molecule is polar.
Answer:
No
Explanation:
given that, enthalpy is a state function, that means it depends only on the initial and final states, there is no difference between the enthalpy of a phase transition versus the enthalpy of a heating or cooling process, when the cooling or heating process finish in a change of phase.
It does not matter which way we take to cool or heat the substances the Enthalpy of this process will be the same.