![\bf ~~~~~~\textit{initial velocity} \\\\ \begin{array}{llll} ~~~~~~\textit{in feet} \\\\ h(t) = -16t^2+v_ot+h_o \end{array} \quad \begin{cases} v_o=\stackrel{64}{\textit{initial velocity of the object}}\\\\ h_o=\stackrel{0\qquad \textit{from the ground}}{\textit{initial height of the object}}\\\\ h=\stackrel{}{\textit{height of the object at "t" seconds}} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%5Ctextit%7Binitial%20velocity%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20~~~~~~%5Ctextit%7Bin%20feet%7D%20%5C%5C%5C%5C%20h%28t%29%20%3D%20-16t%5E2%2Bv_ot%2Bh_o%20%5Cend%7Barray%7D%20%5Cquad%20%5Cbegin%7Bcases%7D%20v_o%3D%5Cstackrel%7B64%7D%7B%5Ctextit%7Binitial%20velocity%20of%20the%20object%7D%7D%5C%5C%5C%5C%20h_o%3D%5Cstackrel%7B0%5Cqquad%20%5Ctextit%7Bfrom%20the%20ground%7D%7D%7B%5Ctextit%7Binitial%20height%20of%20the%20object%7D%7D%5C%5C%5C%5C%20h%3D%5Cstackrel%7B%7D%7B%5Ctextit%7Bheight%20of%20the%20object%20at%20%22t%22%20seconds%7D%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)

Check the picture below, it hits the ground at 0 feet, where it came from, the ground, and when it came back down.
For this, you use the Law of Distribution and multiply -1 by all terms in the parentheses. 7 • -1 = -7; -c • -1 = c. Then you combine them, but since c is a variable, -7 + c is the most simplified it can get. I hope this helped!
Answer:
<h2>
-4</h2>
Option B is the correct option.
Step-by-step explanation:

Subtract the numbers

Multiply the numbers

Evaluate the power

Calculate the difference

Hope this helps..
Best regards!!
Answer:
f(-2/3) = -1
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = 3x + 1
f(-2/3) is x = -2/3
<u>Step 2: Evaluate</u>
- Substitute: f(-2/3) = 3(-2/3) + 1
- Multiply: f(-2/3) = -2 + 1
- Add: f(-2/3) = -1
Answer:
true
Step-by-step explanation:
hope you have a wonderful new year