Answer:
Magnetic dipole moment is 0.0683 J/T.
Explanation:
It is given that,
Length of the rod, l = 7.3 cm = 0.073 m
Diameter of the cylinder, d = 1.5 cm = 0.015 m
Magnetization, 
The dipole moment per unit volume is called the magnetization of a magnet. Mathematically, it is given by :


Where
r is the radius of rod, r = 0.0075 m


So, its magnetic dipole moment is 0.0683 J/T. Hence, this is the required solution.
1. The problem statement, all variables and given/known data A person jumps from the roof of a house 3.4 meters high. When he strikes the ground below, he bends his knees so that his torso decelerates over an approximate distance of 0.70 meters. If the mass of his torso (excluding legs) is 41 kg. A. Find his velocity just before his feet strike the ground. B. Find the average force exerted on his torso by his legs during deceleration. 2. Relevant equations I can't even seem to figure that part out. Help please? 3. The attempt at a solution I don't know how to start this at all
Where the m1 and m2 is the mass of two object. U1 and U2 are the initial velocity of hockey pucks. V1 and V2 are the final velocity of Hockey Pucks.
m2=2kg The initial velocity of both pucks are 0. The v1=8m/s. All you have to do now is find v2
0=4-2v
-4=-2v
v=+2m/s
Answer: +2
Freeze wedging<span> is caused by the repeated freeze-thaw. </span>Frost wedging<span> occurs as the result of 9 % expansion of water when it is converted to ice. Cracks filled with water are forced further apart when it freezes. cycle.</span>