This is an example of inertia - the body keeps it's energy because there is no force applied to it. When we try to stop it's motion, it resists. A man is not rigidly attached to the bus, so he keeps moving forward, at least until he hits the front window from inside. Answer is D.
Answer:
THES IS NOT
Explanation:
THIS PAPAER IS A FAKE PAPAER BEACISE POGI TALAGA AKO
Hey JayDilla, I get 1/3. Here's how:
Kinetic energy due to linear motion is:

where

giving

The rotational part requires the moment of inertia of a solid cylinder

Then the rotational kinetic energy is

Adding the two types of energy and factoring out common terms gives

Here the "1" in the parenthesis is due to linear motion and the "1/2" is due to the rotational part. Since this gives a total of 3/2 altogether, and the rotational part is due to a third of this (1/2), I say it's 1/3.
Answer:
The frictional force between two bodies depends mainly on three factors: (I) the adhesion between body surfaces (ii) roughness of the surface (iii) deformation of bodies
Answer:
Object should be placed at a distance, u = 7.8 cm
Given:
focal length of convex lens, F = 16.5 cm
magnification, m = 1.90
Solution:
Magnification of lens, m = -
where
u = object distance
v = image distance
Now,
1.90 = 
v = - 1.90u
To calculate the object distance, u by lens maker formula given by:
u = 7.8 cm
Object should be placed at a distance of 7.8 cm on the axis of the lens to get virtual and enlarged image.