Answer:

Explanation:
Given that:
- mass of 1 skier,

- inclination of hill,

- length of inclined slope,

- time taken to reach the top of hill,

- coefficient of friction,

<em>Now, force normal to the inclined plane:</em>



<em>Frictional force:</em>



<em>The component of weight along the inclined plane:</em>



<em>Now the total force required along the inclination to move at the top of hill:</em>



<em>Hence the work done:</em>



<em>Now power:</em>



<u>So, power required for 30 such bodies:</u>




Answer:
Here we have some of the requirement of practical fuel are
1. It must contain large amount of stored energy. So that more amount of power output available to run the engines, motors etc.
2. It must occur in abundance in nature or be easy to produce.
3. The fuel must be made up of elements that combine easily with oxygen. Foe example if hydrogen molecules reacts with oxygen. Then the products are at the reaction of lower energy than the reactants, the result is the explosive release of energy and the product of water.
Answer:
The thrust of the jet engine is 4188.81 N.
Explanation:
Given that,
Speed = 260 m/s
Rate in air= 53.3 kg/s
Rate of fuel = 3.63 kg/s
Relative speed = 317 m/s
We need to calculate the rate of mass change in the rocket
Using formula of rate of mass

Put the value into the formula


We need to calculate the thrust of the jet engine
Using formula of thrust

Put the value into the formula


Hence, The thrust of the jet engine is 4188.81 N.
The number of significant digits to the answer of the following problem is four.
<h3>What are the significant digits?</h3>
The number of digits rounded to the approximate integer values are called the significant digits.
The following problem is
(2.49303 g) * (2.59 g) / (7.492 g) =
On solving we get
= 0.86184566204
The answer is approximated to 0.86185
Thus, the significant digits must be four.
Learn more about significant digits.
brainly.com/question/1658998
#SPJ1
Answer:
The voltage on the secondary is 12 V while the current is 0.5 A.
Explanation:
A transformer works by changing the level of the voltage and current on a circuit using a magnetic field and two coils. The ratio by wich they are changed is dependant on the ratio of turns between the primary and secondary of the transformer. In this case we have a ratio for the voltage of:
ratio = (turns on the secondary)/(turns on the primary)
ratio = 100/1000 = 0.1
So in this case the voltage delivered to the primary will be multiplied by 0.1. We can now calculate the voltage on the secondary:
Voltage secondary = Voltage primary* ratio = 120*0.1 = 12 V
The transformer maintains roughly the same power output on both sides, since the power output on a electric circuit is given by the product of the voltage by the current on that circuit, to maintain the same power when the voltage has been droped the current must be raised by the same ratio. So we have:
Current secondary = Current primary*(1/ratio) =0.05*(1/0.1) = 0.5 A