Refer to the figure shown below.
Let m₁ and m₂ e the two masses.
Let a = the acceleration.
Let T = tension over the frictionless pulley.
Write the equations of motion.
m₂g - T = m₂a (1)
T - m₁g = m₁a (2)
Add equations (1) and (2).
m₂g - T + T - m₁g = (m₁ + m₂)a
(m₂ - m₁)g = (m₁ + m₂)a
Divide through by m₁.
(m₂/m₁ - 1)g = (1 + m₂/m₁)a
Define r = m₂/m₁ as the ratio of the two masses. Then
(r - 1)g = (1 +r)a
r(g-a) = a + g
r = (g - a)/(g + a)
With = 2 ft/s from rest, the acceleration is
a = 2/32.2 = 0.062 ft/s²
Therefore
r = (32.2 - 0.062)/(32.2 + 0.062) = 0.9962
Answer:
The ratio of masses is 0.9962 (heavier mass divided by the lighter mass).
Time stops everything is made out of atoms so if atoms freeze everything freezes
Answer:
Part a)

Part b)

Explanation:
Time period of sun is given as



Now the radius of the orbit of sun is given as



Part a)
centripetal acceleration is given as




Part b)
orbital speed is given as



<span>The correct answer is blue. If you look at a luminosity star chart, called the Hertzsprung Russell Diagram, you will see the measurement of luminosity on the left side, and you will see a curve of stars with different colors (which correlate to the colors of the stars). Look for 30 on the luminosity measurement (look between 1 and 100). Then, move horizontally across the diagram until you hit the stars, whose color will be blue. Thus, blue is the answer.</span>
Answer:
P = 1235.7646 W
Explanation:
Given data:
height of raised sewage = 5.49 m
rate of sewage =1.89*10^6 lt/day
density of sewage = 1.050 kg/m^3
power is written as

work = m g h

h -height
mass lifted per day 
= 1984500 kg
time = 24 hours* 3600 seconds per hour
power
P = 1235.7646 W