The drop in physical activity is partly due to inaction during leisure time and sedentary behaviour on the job and at home. Likewise, an increase in the use of "passive" modes of transportation also contributes to insufficient physical activity.
Answer:
a The kinetic energy is 
b The height of the center of mass above that position is
Explanation:
From the question we are told that
The length of the rod is 
The mass of the rod
The angular speed at the lowest point is 
Generally moment of inertia of the rod about an axis that passes through its one end is
Substituting values


Generally the kinetic energy rod is mathematically represented as



From the law of conservation of energy
The kinetic energy of the rod during motion = The potential energy of the rod at the highest point
Therefore



Answer: a) The rate constant, k, for this reaction is
b) No
does not depend on concentration.
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

Given: Order with respect to
= 1
Thus rate law is:
a) ![Rate=k[A]^1](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5E1)
k= rate constant
![0.00250=k[0.484]^1](https://tex.z-dn.net/?f=0.00250%3Dk%5B0.484%5D%5E1)

The rate constant, k, for this reaction is
b) Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample
a = let initial amount of the reactant
a - x = amount left after decay process
Half life is the amount of time taken by a radioactive material to decay to half of its original value.


Thus
does not depend on concentration.
The displacement of a moving object is the straight-line distance between the place it starts from and the place where it stops.
The displacement of anything moving along a circular track depends on how far around it goes before it stops. The greatest displacement it can possibly have is the diameter of the track ... 100m on this particular one ... because that's as far apart as two places on a circle can ever be.
The most interesting case is when the object goes around the circle exactly once. Then it stops at the same place it started from, the distance between the starting point and ending point is zero, and after all that motion, the displacement is zero.