Answer:
Explanation:
A. Using
Sinစ= y/ L = 0.013/2.7= 0.00481
စ=0.28°
B.here we use
Alpha= πsinစa/lambda
= π x (0.0351)sin(0.28)/588E-9m
= 9.1*10^-2rad
C.we use
I(စ)/Im= (sin alpha/alpha) ²
So
{= (sin0.091/0.091)²
= 3*10^-4
Answer:

Explanation:
The force is defined as the negative of the derivative of the potential energy:

If we use the potential energy function given in this problem:

and we calculate the force, we get:

So, the force is

It will be stand 46.67 all i did was divide both numbers but im not sure if im right but i hope i am hope i helped:)
To calculate the mass of the fuel, we use the formula

Here, m is the mass of fuel, V is the volume of the fuel and its value is
and
is the density and its value of 0.821 g/mL.
Substituting these values in above relation, we get
Thus, the mass of the fuel 247 .94 kg.
Answer:
A₁/A₂ = 0.44
Explanation:
The emissive power of the bulb is given by the formula:
P = σεAT⁴
where,
P = Emissive Power
σ = Stefan-Boltzman constant
ε = Emissivity
A = Surface Area
T = Absolute Temperature of Surface
<u>FOR BULB 1:</u>
Since, emissivity and emissive power are constant.
Therefore,
P = σεA₁T₁⁴ ----------- equation 1
where,
A₁ = Surface Area of Bulb 1
T₁ = Temperature of Bulb 1 = 3000 k
<u>FOR BULB 2:</u>
Since, emissivity and emissive power are constant.
Therefore,
P = σεA₂T₂⁴ ----------- equation 2
where,
A₂ = Surface Area of Bulb 2
T₂ = Temperature of Bulb 1 = 2000 k
Dividing equation 1 by equation 2, we get:
P/P = σεA₁T₁⁴/σεA₂T₂⁴
1 = A₁(3000)²/A₂(2000)²
A₁/A₂ = (2000)²/(3000)²
<u>A₁/A₂ = 0.44</u>