Kinetic energy of the ball is (mv²) / 2, where m is the mass and v is the velocity
So plugging in the mass and the velocity into the kinetic energy expression, you get:
Kinetic energy of the ball = (mv²) / 2
(0.3125/32) times (132)² divided by 2 = 85 ft-lbs
Kinetic energy of the ball = 85 ft-lbs
Answer:
No.
Explanation:
Given that Kevin decides to soup up his car by replacing the car's wheels with ones that have 1.4 times the diameter of the original wheels. Note that the speedometer in a car is calibrated based on the tire's diameter and on the distance the tire covers in each revolution. (a) Will the reading of the speedometer change ?
Considering the formula
V = wr
Where
V = linear speed
W = angular speed
r = radius of the wheel.
But W = 2πrf
Where the the 2 and pi are constant. The radius of the first wheel will be small but counter balance with the larger frequency.
While the radius of the second wheel may be large but it will be of a small frequency.
We can therefore conclude that the reading on the speedometer will not change. Because speedometer will read the linear speed V.
Answer:
(a) Elongation of the rod==5.61×10⁻⁹m
(b) Change in diameter=1.640×10⁻⁸m
Explanation:
Given data
Diameter d=78 in=1.9812 m
Cross Area is:
![A=(\pi /4)d^{2} \\A=(\pi /4)(1.9812m)^{2}\\A=3.08m^{2}](https://tex.z-dn.net/?f=A%3D%28%5Cpi%20%2F4%29d%5E%7B2%7D%20%5C%5CA%3D%28%5Cpi%20%2F4%29%281.9812m%29%5E%7B2%7D%5C%5CA%3D3.08m%5E%7B2%7D)
Applied Load P=17 KN=17×10³N
E=29 × 106 psi=1.99947961×10¹¹Pa
Stress and Strain in x direction
Stress in x direction
σ=P/A
![=\frac{17*10^{3}N }{3.08m^{2} }\\ =5517.25Pa](https://tex.z-dn.net/?f=%3D%5Cfrac%7B17%2A10%5E%7B3%7DN%20%7D%7B3.08m%5E%7B2%7D%20%7D%5C%5C%20%3D5517.25Pa)
σ=5517.25 Pa
Strain in x direction
ε=σ/E
![=\frac{5517.25}{1.99947961*10^{11} } \\=2.76*10^{-8}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B5517.25%7D%7B1.99947961%2A10%5E%7B11%7D%20%7D%20%5C%5C%3D2.76%2A10%5E%7B-8%7D)
ε=2.76×10⁻⁸
Part (a)
Elongation of the rod=Lε
=(0.2032)(2.76×10⁻⁸)
Elongation of the rod==5.61×10⁻⁹m
Part(b) Change in diameter
Strain in y direction
ε₁= -vε
ε₁= -(0.30)(2.76×10⁻⁸)
ε₁=-8.28×10⁻⁹
Change in diameter=d×ε₁
Change in diameter=(1.9812m)×(-8.28×10⁻⁹)
Change in diameter=1.640×10⁻⁸m
When we jump from the truck and accelerate towards the earth surface, the earth also accelerates towards us but it's acceleration is very negligible.
To find the answer, we need to know about the acceleration of earth due to the gravitational attraction.
<h3>What's the gravitational force between the earth and a person?</h3>
- Gravitational attraction force is GMm/r² between the earth and a person.
- M= mass of the earth
m= mass of the person
r= separation between them.
<h3>What's the acceleration of the earth towards the person when he jumps from a truck?</h3>
- According to Newton's second law, Force = M×acceleration
- Acceleration= Force / M
- Here, Force = GMm/r²,
so acceleration of earth= Gm/r²
- As this acceleration is very small, so we can't notice it.
Thus, we can conclude that the earth also accelerates towards us.
Learn more about the gravitational force here:
brainly.com/question/72250
#SPJ4
Answer:
Resistance = 252.53 Ohms
Explanation:
Given the following data;
Charge = 0.125 C
Voltage = 5 V
Time = 6.3 seconds
To find the resistance;
First of all, we would determine the current flowing through the battery;
Quantity of charge, Q = current * time
0.125 = current * 6.3
Current = 0.125/6.3
Current = 0.0198 A
Next, we find the resistance;
Resistance = voltage/current
Resistance = 5/0.0198
Resistance = 252.53 Ohms