To find the answer for this question, you simply need to divide 20 by 8, which is the speed he is traveling.
20 / 8 = 2.5
The football player will run 20 yards in 2 1/2 seconds.
Hope that helped! =)
Answer:
Option B. 5 nC
Explanation:
From the question given above, the following data were obtained:
Capicitance (C) = 100 pF
Potential difference (V) = 50 V
Quantity of charge (Q) =?
Next, we shall convert 100 pF to Farad (F). This can be obtained as follow:
1 pF = 1×10¯¹² F
Therefore,
100 pF = 100 pF × 1×10¯¹² F / 1 pF
100 pF = 1×10¯¹⁰ F
Next, we shall determine the quantity of charge. This can be obtained as follow:
Capicitance (C) = 1×10¯¹⁰ F
Potential difference (V) = 50 V
Quantity of charge (Q) =?
Q = CV
Q = 1×10¯¹⁰ × 50
Q = 5×10¯⁹ C
Finally, we shall convert 5×10¯⁹ C to nano coulomb (nC). This can be obtained as follow:
1 C = 1×10⁹ nC
Therefore,
5×10¯⁹ C = 5×10¯⁹ C × 1×10⁹ nC / 1 C
5×10¯⁹ C = 5 nC
Thus, the quantity of charge is 5 nC
2.14x 1022 kg
the 22 is a xponet of ten
Answer:
Acceleration=24.9ft^2/s^2
Angular acceleration=1.47rads/s
Explanation:
Note before the ladder is inclined at 30° to the horizontal with a length of 16ft
Hence angular velocity = 6/8=0.75rad/s
acceleration Ab=Aa +(Ab/a)+(Ab/a)t
4+0.75^2*16+a*16
0=0.75^2*16cos30°-a*16sin30°---1
Ab=0+0.75^2sin30°+a*16cos30°----2
Solving equation 1
(0.75^2*16cos30/16sin30)=angular acceleration=a=1.47rad/s
Also from equation 2
Ab=0.75^2*16sin30+1.47*16cos30=24.9ft^2/s^2
Answer:

Explanation:
As we know that box was initially at rest
so here work done by all forces on the box = change in its kinetic energy
so we will have

now we have
m = 10 kg

L = 3.5 m
so we will have


so final speed is given as
