Answer:
Quantum mechanics is a key hypothesis in material science that gives a portrayal of the actual properties of nature at the size of iotas and subatomic particles. It is the establishment of all quantum physical science including quantum science, quantum field hypothesis, quantum innovation, and quantum data science.
Explanation:
It is the greatest of issues, it is the littlest of issues. At present physicists have two separate rule books clarifying how nature functions. There is general relativity, which perfectly represents gravity and everything it overwhelms: circling planets, impacting worlds, the elements of the growing universe all in all. That is enormous. At that point there is quantum mechanics, which handles the other three powers – electromagnetism and the two atomic powers. Quantum hypothesis is very proficient at portraying what happens when a uranium molecule rots, or when singular particles of light hit a sun based cell. That is little.
An object’s mass is not determined by gravity, however weight is. With this information, you can figure out that Mars has less gravity acting on the object.
Answer:
The correct answer is:
(A) to the left
(B) at speed -0.8725 m/s
Explanation:
The given values are:
Plate 1:
Mass,
m₁ = 201 g
Velocity,
v₁ = +1.79 m/s
Plate 2:
Mass,
m₁ = 335 g
Velocity,
v₁ = -2.47 m/s
According to the conservation of momentum, we get
⇒ 
then,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒ 
⇒
(to the left)
Answer:
136000 J or 136 kJ
Explanation:
Formula
Heat = m * c * deltaH
Givens
m= 0.5 kg
c = 3400 J / (kg * oC)
Deltat = (100oC - 20oC)
deltat = 80oC
Solution
Heat = 0.5 kg * 3400 J/(kg* oC) * 80oC
Heat = 136000 Joules
Heat = 136 kg
Technically there is only 1 place of accuracy.
Answer:
- <em>In both cases the tension in the rope is </em><u>equal to 500N</u>
Explanation:
It may be that in the case of the <em>tree</em>, the result is more intuitive, because you can think that there is only one force. But this is misleading.
To find the <em>tension in the rope</em>, you should draw a free body diagram. By doing so, you would find that the rope is static because there are two opposite forces. Assuming, for simplicity, that the rope is horizontal, a force of 500N is pulling to one direction (let's say to the right) and a force of 500N is pulling to the opposite direction (to the left). Else, the rope would not be static.
That analysys is the same for the<em> rope tied to the tree</em> ( the tree is pulling with 500N, such as the man, but in opposite direction) and when the rope is pulled by <em>two men</em> on opposite ends, each with<em> forces of 500N.</em>
Hence, the tension is the same and equal to 500N.